Metamath Proof Explorer


Theorem tsmssub

Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tsmssub.b B=BaseG
tsmssub.p -˙=-G
tsmssub.1 φGCMnd
tsmssub.2 φGTopGrp
tsmssub.a φAV
tsmssub.f φF:AB
tsmssub.h φH:AB
tsmssub.x φXGtsumsF
tsmssub.y φYGtsumsH
Assertion tsmssub φX-˙YGtsumsF-˙fH

Proof

Step Hyp Ref Expression
1 tsmssub.b B=BaseG
2 tsmssub.p -˙=-G
3 tsmssub.1 φGCMnd
4 tsmssub.2 φGTopGrp
5 tsmssub.a φAV
6 tsmssub.f φF:AB
7 tsmssub.h φH:AB
8 tsmssub.x φXGtsumsF
9 tsmssub.y φYGtsumsH
10 eqid +G=+G
11 tgptmd GTopGrpGTopMnd
12 4 11 syl φGTopMnd
13 tgpgrp GTopGrpGGrp
14 eqid invgG=invgG
15 1 14 grpinvf GGrpinvgG:BB
16 4 13 15 3syl φinvgG:BB
17 fco invgG:BBH:ABinvgGH:AB
18 16 7 17 syl2anc φinvgGH:AB
19 1 14 3 4 5 7 9 tsmsinv φinvgGYGtsumsinvgGH
20 1 10 3 12 5 6 18 8 19 tsmsadd φX+GinvgGYGtsumsF+GfinvgGH
21 tgptps GTopGrpGTopSp
22 4 21 syl φGTopSp
23 1 3 22 5 6 tsmscl φGtsumsFB
24 23 8 sseldd φXB
25 1 3 22 5 7 tsmscl φGtsumsHB
26 25 9 sseldd φYB
27 1 10 14 2 grpsubval XBYBX-˙Y=X+GinvgGY
28 24 26 27 syl2anc φX-˙Y=X+GinvgGY
29 6 ffvelcdmda φkAFkB
30 7 ffvelcdmda φkAHkB
31 1 10 14 2 grpsubval FkBHkBFk-˙Hk=Fk+GinvgGHk
32 29 30 31 syl2anc φkAFk-˙Hk=Fk+GinvgGHk
33 32 mpteq2dva φkAFk-˙Hk=kAFk+GinvgGHk
34 6 feqmptd φF=kAFk
35 7 feqmptd φH=kAHk
36 5 29 30 34 35 offval2 φF-˙fH=kAFk-˙Hk
37 fvexd φkAinvgGHkV
38 16 feqmptd φinvgG=xBinvgGx
39 fveq2 x=HkinvgGx=invgGHk
40 30 35 38 39 fmptco φinvgGH=kAinvgGHk
41 5 29 37 34 40 offval2 φF+GfinvgGH=kAFk+GinvgGHk
42 33 36 41 3eqtr4d φF-˙fH=F+GfinvgGH
43 42 oveq2d φGtsumsF-˙fH=GtsumsF+GfinvgGH
44 20 28 43 3eltr4d φX-˙YGtsumsF-˙fH