Metamath Proof Explorer


Theorem ttgval

Description: Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof shortened by AV, 9-Nov-2024)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgval.b ⊒B=BaseH
ttgval.m ⊒-Λ™=-H
ttgval.s βŠ’Β·Λ™=β‹…H
ttgval.i ⊒I=Itv⁑G
Assertion ttgval ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz∧I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgval.b ⊒B=BaseH
3 ttgval.m ⊒-Λ™=-H
4 ttgval.s βŠ’Β·Λ™=β‹…H
5 ttgval.i ⊒I=Itv⁑G
6 1 a1i ⊒H∈Vβ†’G=to𝒒Tarski⁑H
7 elex ⊒H∈Vβ†’H∈V
8 fveq2 ⊒w=Hβ†’Basew=BaseH
9 8 2 eqtr4di ⊒w=Hβ†’Basew=B
10 fveq2 ⊒w=Hβ†’-w=-H
11 10 3 eqtr4di ⊒w=Hβ†’-w=-Λ™
12 11 oveqd ⊒w=Hβ†’z-wx=z-Λ™x
13 fveq2 ⊒w=Hβ†’β‹…w=β‹…H
14 13 4 eqtr4di ⊒w=Hβ†’β‹…w=Β·Λ™
15 eqidd ⊒w=Hβ†’k=k
16 11 oveqd ⊒w=Hβ†’y-wx=y-Λ™x
17 14 15 16 oveq123d ⊒w=Hβ†’kβ‹…wy-wx=kΒ·Λ™y-Λ™x
18 12 17 eqeq12d ⊒w=Hβ†’z-wx=kβ‹…wy-wx↔z-Λ™x=kΒ·Λ™y-Λ™x
19 18 rexbidv ⊒w=Hβ†’βˆƒk∈01z-wx=kβ‹…wy-wxβ†”βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
20 9 19 rabeqbidv ⊒w=Hβ†’z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
21 9 9 20 mpoeq123dv ⊒w=Hβ†’x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
22 oveq1 ⊒w=Hβ†’wsSetItv⁑ndxi=HsSetItv⁑ndxi
23 9 rabeqdv ⊒w=Hβ†’z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=z∈B|z∈xiy∨x∈ziy∨y∈xiz
24 9 9 23 mpoeq123dv ⊒w=Hβ†’x∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=x∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
25 24 opeq2d ⊒w=Hβ†’Line𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
26 22 25 oveq12d ⊒w=Hβ†’wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
27 21 26 csbeq12dv ⊒w=H→⦋x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
28 df-ttg ⊒to𝒒Tarski=w∈VβŸΌβ¦‹x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
29 ovex ⊒HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz∈V
30 29 csbex βŠ’β¦‹x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz∈V
31 27 28 30 fvmpt ⊒H∈Vβ†’to𝒒Tarski⁑H=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
32 7 31 syl ⊒H∈Vβ†’to𝒒Tarski⁑H=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
33 2 fvexi ⊒B∈V
34 33 33 mpoex ⊒x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈V
35 34 a1i ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈V
36 simpr ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
37 oveq2 ⊒a=xβ†’c-Λ™a=c-Λ™x
38 oveq2 ⊒a=xβ†’b-Λ™a=b-Λ™x
39 38 oveq2d ⊒a=xβ†’kΒ·Λ™b-Λ™a=kΒ·Λ™b-Λ™x
40 37 39 eqeq12d ⊒a=xβ†’c-Λ™a=kΒ·Λ™b-Λ™a↔c-Λ™x=kΒ·Λ™b-Λ™x
41 40 rexbidv ⊒a=xβ†’βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†”βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x
42 41 rabbidv ⊒a=xβ†’c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a=c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x
43 oveq1 ⊒b=yβ†’b-Λ™x=y-Λ™x
44 43 oveq2d ⊒b=yβ†’kΒ·Λ™b-Λ™x=kΒ·Λ™y-Λ™x
45 44 eqeq2d ⊒b=yβ†’c-Λ™x=kΒ·Λ™b-Λ™x↔c-Λ™x=kΒ·Λ™y-Λ™x
46 45 rexbidv ⊒b=yβ†’βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™xβ†”βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x
47 46 rabbidv ⊒b=yβ†’c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x=c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x
48 oveq1 ⊒c=zβ†’c-Λ™x=z-Λ™x
49 48 eqeq1d ⊒c=zβ†’c-Λ™x=kΒ·Λ™y-Λ™x↔z-Λ™x=kΒ·Λ™y-Λ™x
50 49 rexbidv ⊒c=zβ†’βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™xβ†”βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
51 50 cbvrabv ⊒c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
52 47 51 eqtrdi ⊒b=yβ†’c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
53 42 52 cbvmpov ⊒a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
54 36 53 eqtr4di ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a
55 simpr ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a
56 55 53 eqtrdi ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
57 56 opeq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’Itv⁑ndxi=Itv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
58 57 oveq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’HsSetItv⁑ndxi=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
59 56 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’xiy=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
60 59 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈xiy↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
61 56 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’ziy=zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
62 61 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’x∈ziy↔x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
63 56 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’xiz=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
64 63 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’y∈xiz↔y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
65 60 62 64 3orbi123d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈xiy∨x∈ziy∨y∈xiz↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
66 65 rabbidv ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈B|z∈xiy∨x∈ziy∨y∈xiz=z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
67 66 mpoeq3dv ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’x∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=x∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
68 67 opeq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
69 58 68 oveq12d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
70 54 69 syldan ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
71 35 70 csbied ⊒H∈V→⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
72 6 32 71 3eqtrd ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
73 72 fveq2d ⊒H∈Vβ†’Itv⁑G=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
74 itvid ⊒Itv=SlotItv⁑ndx
75 lngndxnitvndx ⊒Line𝒒⁑ndxβ‰ Itv⁑ndx
76 75 necomi ⊒Itv⁑ndxβ‰ Line𝒒⁑ndx
77 74 76 setsnid ⊒Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
78 73 77 eqtr4di ⊒H∈Vβ†’Itv⁑G=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
79 5 a1i ⊒H∈Vβ†’I=Itv⁑G
80 74 setsid ⊒H∈V∧x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
81 34 80 mpan2 ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
82 78 79 81 3eqtr4d ⊒H∈Vβ†’I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
83 82 oveqd ⊒H∈Vβ†’xIy=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
84 83 eleq2d ⊒H∈Vβ†’z∈xIy↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
85 82 oveqd ⊒H∈Vβ†’zIy=zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
86 85 eleq2d ⊒H∈Vβ†’x∈zIy↔x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
87 82 oveqd ⊒H∈Vβ†’xIz=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
88 87 eleq2d ⊒H∈Vβ†’y∈xIz↔y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
89 84 86 88 3orbi123d ⊒H∈Vβ†’z∈xIy∨x∈zIy∨y∈xIz↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
90 89 rabbidv ⊒H∈Vβ†’z∈B|z∈xIy∨x∈zIy∨y∈xIz=z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
91 90 mpoeq3dv ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=x∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
92 91 opeq2d ⊒H∈Vβ†’Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
93 92 oveq2d ⊒H∈Vβ†’HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
94 72 93 eqtr4d ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz
95 94 82 jca ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz∧I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x