Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | txdis | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop | |
|
2 | distop | |
|
3 | unipw | |
|
4 | 3 | eqcomi | |
5 | unipw | |
|
6 | 5 | eqcomi | |
7 | 4 6 | txuni | |
8 | 1 2 7 | syl2an | |
9 | eqimss2 | |
|
10 | 8 9 | syl | |
11 | sspwuni | |
|
12 | 10 11 | sylibr | |
13 | elelpwi | |
|
14 | 13 | adantl | |
15 | xp1st | |
|
16 | snelpwi | |
|
17 | 14 15 16 | 3syl | |
18 | xp2nd | |
|
19 | snelpwi | |
|
20 | 14 18 19 | 3syl | |
21 | vsnid | |
|
22 | 1st2nd2 | |
|
23 | 14 22 | syl | |
24 | 23 | sneqd | |
25 | 21 24 | eleqtrid | |
26 | simprl | |
|
27 | 23 26 | eqeltrrd | |
28 | 27 | snssd | |
29 | xpeq1 | |
|
30 | 29 | eleq2d | |
31 | 29 | sseq1d | |
32 | 30 31 | anbi12d | |
33 | xpeq2 | |
|
34 | fvex | |
|
35 | fvex | |
|
36 | 34 35 | xpsn | |
37 | 33 36 | eqtrdi | |
38 | 37 | eleq2d | |
39 | 37 | sseq1d | |
40 | 38 39 | anbi12d | |
41 | 32 40 | rspc2ev | |
42 | 17 20 25 28 41 | syl112anc | |
43 | 42 | expr | |
44 | 43 | ralrimdva | |
45 | eltx | |
|
46 | 1 2 45 | syl2an | |
47 | 44 46 | sylibrd | |
48 | 47 | ssrdv | |
49 | 12 48 | eqssd | |