Metamath Proof Explorer


Theorem txdis

Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion txdis AVBW𝒫A×t𝒫B=𝒫A×B

Proof

Step Hyp Ref Expression
1 distop AV𝒫ATop
2 distop BW𝒫BTop
3 unipw 𝒫A=A
4 3 eqcomi A=𝒫A
5 unipw 𝒫B=B
6 5 eqcomi B=𝒫B
7 4 6 txuni 𝒫ATop𝒫BTopA×B=𝒫A×t𝒫B
8 1 2 7 syl2an AVBWA×B=𝒫A×t𝒫B
9 eqimss2 A×B=𝒫A×t𝒫B𝒫A×t𝒫BA×B
10 8 9 syl AVBW𝒫A×t𝒫BA×B
11 sspwuni 𝒫A×t𝒫B𝒫A×B𝒫A×t𝒫BA×B
12 10 11 sylibr AVBW𝒫A×t𝒫B𝒫A×B
13 elelpwi yxx𝒫A×ByA×B
14 13 adantl AVBWyxx𝒫A×ByA×B
15 xp1st yA×B1styA
16 snelpwi 1styA1sty𝒫A
17 14 15 16 3syl AVBWyxx𝒫A×B1sty𝒫A
18 xp2nd yA×B2ndyB
19 snelpwi 2ndyB2ndy𝒫B
20 14 18 19 3syl AVBWyxx𝒫A×B2ndy𝒫B
21 vsnid yy
22 1st2nd2 yA×By=1sty2ndy
23 14 22 syl AVBWyxx𝒫A×By=1sty2ndy
24 23 sneqd AVBWyxx𝒫A×By=1sty2ndy
25 21 24 eleqtrid AVBWyxx𝒫A×By1sty2ndy
26 simprl AVBWyxx𝒫A×Byx
27 23 26 eqeltrrd AVBWyxx𝒫A×B1sty2ndyx
28 27 snssd AVBWyxx𝒫A×B1sty2ndyx
29 xpeq1 z=1styz×w=1sty×w
30 29 eleq2d z=1styyz×wy1sty×w
31 29 sseq1d z=1styz×wx1sty×wx
32 30 31 anbi12d z=1styyz×wz×wxy1sty×w1sty×wx
33 xpeq2 w=2ndy1sty×w=1sty×2ndy
34 fvex 1styV
35 fvex 2ndyV
36 34 35 xpsn 1sty×2ndy=1sty2ndy
37 33 36 eqtrdi w=2ndy1sty×w=1sty2ndy
38 37 eleq2d w=2ndyy1sty×wy1sty2ndy
39 37 sseq1d w=2ndy1sty×wx1sty2ndyx
40 38 39 anbi12d w=2ndyy1sty×w1sty×wxy1sty2ndy1sty2ndyx
41 32 40 rspc2ev 1sty𝒫A2ndy𝒫By1sty2ndy1sty2ndyxz𝒫Aw𝒫Byz×wz×wx
42 17 20 25 28 41 syl112anc AVBWyxx𝒫A×Bz𝒫Aw𝒫Byz×wz×wx
43 42 expr AVBWyxx𝒫A×Bz𝒫Aw𝒫Byz×wz×wx
44 43 ralrimdva AVBWx𝒫A×Byxz𝒫Aw𝒫Byz×wz×wx
45 eltx 𝒫ATop𝒫BTopx𝒫A×t𝒫Byxz𝒫Aw𝒫Byz×wz×wx
46 1 2 45 syl2an AVBWx𝒫A×t𝒫Byxz𝒫Aw𝒫Byz×wz×wx
47 44 46 sylibrd AVBWx𝒫A×Bx𝒫A×t𝒫B
48 47 ssrdv AVBW𝒫A×B𝒫A×t𝒫B
49 12 48 eqssd AVBW𝒫A×t𝒫B=𝒫A×B