| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tz7.48.1 |
|
| 2 |
|
r2al |
|
| 3 |
|
simpl |
|
| 4 |
3
|
anim1i |
|
| 5 |
4
|
imim1i |
|
| 6 |
5
|
expd |
|
| 7 |
6
|
2alimi |
|
| 8 |
2 7
|
sylbi |
|
| 9 |
|
r2al |
|
| 10 |
8 9
|
sylibr |
|
| 11 |
|
elequ1 |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
notbid |
|
| 15 |
11 14
|
imbi12d |
|
| 16 |
15
|
cbvralvw |
|
| 17 |
16
|
ralbii |
|
| 18 |
|
elequ2 |
|
| 19 |
|
fveqeq2 |
|
| 20 |
19
|
notbid |
|
| 21 |
18 20
|
imbi12d |
|
| 22 |
21
|
ralbidv |
|
| 23 |
22
|
cbvralvw |
|
| 24 |
|
elequ1 |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
notbid |
|
| 28 |
24 27
|
imbi12d |
|
| 29 |
28
|
cbvralvw |
|
| 30 |
29
|
ralbii |
|
| 31 |
|
elequ2 |
|
| 32 |
|
fveqeq2 |
|
| 33 |
32
|
notbid |
|
| 34 |
31 33
|
imbi12d |
|
| 35 |
34
|
ralbidv |
|
| 36 |
35
|
cbvralvw |
|
| 37 |
30 36
|
bitri |
|
| 38 |
17 23 37
|
3bitri |
|
| 39 |
|
ralcom |
|
| 40 |
39
|
biimpi |
|
| 41 |
38 40
|
sylbi |
|
| 42 |
41
|
ancri |
|
| 43 |
|
r19.26-2 |
|
| 44 |
42 43
|
sylibr |
|
| 45 |
10 44
|
syl |
|
| 46 |
|
fvres |
|
| 47 |
|
fvres |
|
| 48 |
46 47
|
eqeqan12d |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
|
ssel |
|
| 51 |
|
ssel |
|
| 52 |
50 51
|
anim12d |
|
| 53 |
|
pm3.48 |
|
| 54 |
|
oridm |
|
| 55 |
|
eqcom |
|
| 56 |
55
|
notbii |
|
| 57 |
56
|
orbi1i |
|
| 58 |
54 57
|
bitr3i |
|
| 59 |
53 58
|
imbitrrdi |
|
| 60 |
59
|
con2d |
|
| 61 |
|
eloni |
|
| 62 |
|
eloni |
|
| 63 |
|
ordtri3 |
|
| 64 |
63
|
biimprd |
|
| 65 |
61 62 64
|
syl2an |
|
| 66 |
60 65
|
syl9r |
|
| 67 |
52 66
|
syl6 |
|
| 68 |
67
|
imp32 |
|
| 69 |
49 68
|
sylbid |
|
| 70 |
69
|
exp32 |
|
| 71 |
70
|
a2d |
|
| 72 |
71
|
2alimdv |
|
| 73 |
|
r2al |
|
| 74 |
|
r2al |
|
| 75 |
72 73 74
|
3imtr4g |
|
| 76 |
45 75
|
syl5 |
|
| 77 |
76
|
imdistani |
|
| 78 |
|
fnssres |
|
| 79 |
1 78
|
mpan |
|
| 80 |
|
dffn2 |
|
| 81 |
|
dff13 |
|
| 82 |
|
df-f1 |
|
| 83 |
81 82
|
bitr3i |
|
| 84 |
83
|
simprbi |
|
| 85 |
80 84
|
sylanb |
|
| 86 |
79 85
|
sylan |
|
| 87 |
77 86
|
syl |
|