Metamath Proof Explorer


Theorem tz7.48lem

Description: A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 FFnOn
Assertion tz7.48lem AOnxAyx¬Fx=FyFunFA-1

Proof

Step Hyp Ref Expression
1 tz7.48.1 FFnOn
2 r2al xAyx¬Fx=FyxyxAyx¬Fx=Fy
3 simpl xAyAxA
4 3 anim1i xAyAyxxAyx
5 4 imim1i xAyx¬Fx=FyxAyAyx¬Fx=Fy
6 5 expd xAyx¬Fx=FyxAyAyx¬Fx=Fy
7 6 2alimi xyxAyx¬Fx=FyxyxAyAyx¬Fx=Fy
8 2 7 sylbi xAyx¬Fx=FyxyxAyAyx¬Fx=Fy
9 r2al xAyAyx¬Fx=FyxyxAyAyx¬Fx=Fy
10 8 9 sylibr xAyx¬Fx=FyxAyAyx¬Fx=Fy
11 elequ1 y=wyxwx
12 fveq2 y=wFy=Fw
13 12 eqeq2d y=wFx=FyFx=Fw
14 13 notbid y=w¬Fx=Fy¬Fx=Fw
15 11 14 imbi12d y=wyx¬Fx=Fywx¬Fx=Fw
16 15 cbvralvw yAyx¬Fx=FywAwx¬Fx=Fw
17 16 ralbii xAyAyx¬Fx=FyxAwAwx¬Fx=Fw
18 elequ2 x=zwxwz
19 fveqeq2 x=zFx=FwFz=Fw
20 19 notbid x=z¬Fx=Fw¬Fz=Fw
21 18 20 imbi12d x=zwx¬Fx=Fwwz¬Fz=Fw
22 21 ralbidv x=zwAwx¬Fx=FwwAwz¬Fz=Fw
23 22 cbvralvw xAwAwx¬Fx=FwzAwAwz¬Fz=Fw
24 elequ1 w=xwzxz
25 fveq2 w=xFw=Fx
26 25 eqeq2d w=xFz=FwFz=Fx
27 26 notbid w=x¬Fz=Fw¬Fz=Fx
28 24 27 imbi12d w=xwz¬Fz=Fwxz¬Fz=Fx
29 28 cbvralvw wAwz¬Fz=FwxAxz¬Fz=Fx
30 29 ralbii zAwAwz¬Fz=FwzAxAxz¬Fz=Fx
31 elequ2 z=yxzxy
32 fveqeq2 z=yFz=FxFy=Fx
33 32 notbid z=y¬Fz=Fx¬Fy=Fx
34 31 33 imbi12d z=yxz¬Fz=Fxxy¬Fy=Fx
35 34 ralbidv z=yxAxz¬Fz=FxxAxy¬Fy=Fx
36 35 cbvralvw zAxAxz¬Fz=FxyAxAxy¬Fy=Fx
37 30 36 bitri zAwAwz¬Fz=FwyAxAxy¬Fy=Fx
38 17 23 37 3bitri xAyAyx¬Fx=FyyAxAxy¬Fy=Fx
39 ralcom yAxAxy¬Fy=FxxAyAxy¬Fy=Fx
40 39 biimpi yAxAxy¬Fy=FxxAyAxy¬Fy=Fx
41 38 40 sylbi xAyAyx¬Fx=FyxAyAxy¬Fy=Fx
42 41 ancri xAyAyx¬Fx=FyxAyAxy¬Fy=FxxAyAyx¬Fx=Fy
43 r19.26-2 xAyAxy¬Fy=Fxyx¬Fx=FyxAyAxy¬Fy=FxxAyAyx¬Fx=Fy
44 42 43 sylibr xAyAyx¬Fx=FyxAyAxy¬Fy=Fxyx¬Fx=Fy
45 10 44 syl xAyx¬Fx=FyxAyAxy¬Fy=Fxyx¬Fx=Fy
46 fvres xAFAx=Fx
47 fvres yAFAy=Fy
48 46 47 eqeqan12d xAyAFAx=FAyFx=Fy
49 48 ad2antrl AOnxAyAxy¬Fy=Fxyx¬Fx=FyFAx=FAyFx=Fy
50 ssel AOnxAxOn
51 ssel AOnyAyOn
52 50 51 anim12d AOnxAyAxOnyOn
53 pm3.48 xy¬Fy=Fxyx¬Fx=Fyxyyx¬Fy=Fx¬Fx=Fy
54 oridm ¬Fx=Fy¬Fx=Fy¬Fx=Fy
55 eqcom Fx=FyFy=Fx
56 55 notbii ¬Fx=Fy¬Fy=Fx
57 56 orbi1i ¬Fx=Fy¬Fx=Fy¬Fy=Fx¬Fx=Fy
58 54 57 bitr3i ¬Fx=Fy¬Fy=Fx¬Fx=Fy
59 53 58 syl6ibr xy¬Fy=Fxyx¬Fx=Fyxyyx¬Fx=Fy
60 59 con2d xy¬Fy=Fxyx¬Fx=FyFx=Fy¬xyyx
61 eloni xOnOrdx
62 eloni yOnOrdy
63 ordtri3 OrdxOrdyx=y¬xyyx
64 63 biimprd OrdxOrdy¬xyyxx=y
65 61 62 64 syl2an xOnyOn¬xyyxx=y
66 60 65 syl9r xOnyOnxy¬Fy=Fxyx¬Fx=FyFx=Fyx=y
67 52 66 syl6 AOnxAyAxy¬Fy=Fxyx¬Fx=FyFx=Fyx=y
68 67 imp32 AOnxAyAxy¬Fy=Fxyx¬Fx=FyFx=Fyx=y
69 49 68 sylbid AOnxAyAxy¬Fy=Fxyx¬Fx=FyFAx=FAyx=y
70 69 exp32 AOnxAyAxy¬Fy=Fxyx¬Fx=FyFAx=FAyx=y
71 70 a2d AOnxAyAxy¬Fy=Fxyx¬Fx=FyxAyAFAx=FAyx=y
72 71 2alimdv AOnxyxAyAxy¬Fy=Fxyx¬Fx=FyxyxAyAFAx=FAyx=y
73 r2al xAyAxy¬Fy=Fxyx¬Fx=FyxyxAyAxy¬Fy=Fxyx¬Fx=Fy
74 r2al xAyAFAx=FAyx=yxyxAyAFAx=FAyx=y
75 72 73 74 3imtr4g AOnxAyAxy¬Fy=Fxyx¬Fx=FyxAyAFAx=FAyx=y
76 45 75 syl5 AOnxAyx¬Fx=FyxAyAFAx=FAyx=y
77 76 imdistani AOnxAyx¬Fx=FyAOnxAyAFAx=FAyx=y
78 fnssres FFnOnAOnFAFnA
79 1 78 mpan AOnFAFnA
80 dffn2 FAFnAFA:AV
81 dff13 FA:A1-1VFA:AVxAyAFAx=FAyx=y
82 df-f1 FA:A1-1VFA:AVFunFA-1
83 81 82 bitr3i FA:AVxAyAFAx=FAyx=yFA:AVFunFA-1
84 83 simprbi FA:AVxAyAFAx=FAyx=yFunFA-1
85 80 84 sylanb FAFnAxAyAFAx=FAyx=yFunFA-1
86 79 85 sylan AOnxAyAFAx=FAyx=yFunFA-1
87 77 86 syl AOnxAyx¬Fx=FyFunFA-1