Metamath Proof Explorer


Theorem uhgrspansubgrlem

Description: Lemma for uhgrspansubgr : The edges of the graph S obtained by removing some edges of a hypergraph G are subsets of its vertices (a spanning subgraph, see comment for uhgrspansubgr . (Contributed by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V=VtxG
uhgrspan.e E=iEdgG
uhgrspan.s φSW
uhgrspan.q φVtxS=V
uhgrspan.r φiEdgS=EA
uhgrspan.g φGUHGraph
Assertion uhgrspansubgrlem φEdgS𝒫VtxS

Proof

Step Hyp Ref Expression
1 uhgrspan.v V=VtxG
2 uhgrspan.e E=iEdgG
3 uhgrspan.s φSW
4 uhgrspan.q φVtxS=V
5 uhgrspan.r φiEdgS=EA
6 uhgrspan.g φGUHGraph
7 edgval EdgS=raniEdgS
8 7 eleq2i eEdgSeraniEdgS
9 2 uhgrfun GUHGraphFunE
10 funres FunEFunEA
11 6 9 10 3syl φFunEA
12 5 funeqd φFuniEdgSFunEA
13 11 12 mpbird φFuniEdgS
14 elrnrexdmb FuniEdgSeraniEdgSidomiEdgSe=iEdgSi
15 13 14 syl φeraniEdgSidomiEdgSe=iEdgSi
16 5 adantr φidomiEdgSiEdgS=EA
17 16 fveq1d φidomiEdgSiEdgSi=EAi
18 5 dmeqd φdomiEdgS=domEA
19 dmres domEA=AdomE
20 18 19 eqtrdi φdomiEdgS=AdomE
21 20 eleq2d φidomiEdgSiAdomE
22 elinel1 iAdomEiA
23 21 22 syl6bi φidomiEdgSiA
24 23 imp φidomiEdgSiA
25 24 fvresd φidomiEdgSEAi=Ei
26 17 25 eqtrd φidomiEdgSiEdgSi=Ei
27 elinel2 iAdomEidomE
28 21 27 syl6bi φidomiEdgSidomE
29 28 imp φidomiEdgSidomE
30 1 2 uhgrss GUHGraphidomEEiV
31 6 29 30 syl2an2r φidomiEdgSEiV
32 4 pweqd φ𝒫VtxS=𝒫V
33 32 eleq2d φEi𝒫VtxSEi𝒫V
34 33 adantr φidomiEdgSEi𝒫VtxSEi𝒫V
35 fvex EiV
36 35 elpw Ei𝒫VEiV
37 34 36 bitrdi φidomiEdgSEi𝒫VtxSEiV
38 31 37 mpbird φidomiEdgSEi𝒫VtxS
39 26 38 eqeltrd φidomiEdgSiEdgSi𝒫VtxS
40 eleq1 e=iEdgSie𝒫VtxSiEdgSi𝒫VtxS
41 39 40 syl5ibrcom φidomiEdgSe=iEdgSie𝒫VtxS
42 41 rexlimdva φidomiEdgSe=iEdgSie𝒫VtxS
43 15 42 sylbid φeraniEdgSe𝒫VtxS
44 8 43 biimtrid φeEdgSe𝒫VtxS
45 44 ssrdv φEdgS𝒫VtxS