Metamath Proof Explorer


Theorem unbdqndv2lem1

Description: Lemma for unbdqndv2 . (Contributed by Asger C. Ipsen, 12-May-2021)

Ref Expression
Hypotheses unbdqndv2lem1.a φA
unbdqndv2lem1.b φB
unbdqndv2lem1.c φC
unbdqndv2lem1.d φD
unbdqndv2lem1.e φE+
unbdqndv2lem1.1 φD0
unbdqndv2lem1.2 φ2EABD
Assertion unbdqndv2lem1 φEDACEDBC

Proof

Step Hyp Ref Expression
1 unbdqndv2lem1.a φA
2 unbdqndv2lem1.b φB
3 unbdqndv2lem1.c φC
4 unbdqndv2lem1.d φD
5 unbdqndv2lem1.e φE+
6 unbdqndv2lem1.1 φD0
7 unbdqndv2lem1.2 φ2EABD
8 1 2 subcld φAB
9 8 4 6 absdivd φABD=ABD
10 9 adantr φ¬EDACEDBCABD=ABD
11 8 abscld φAB
12 11 adantr φ¬EDACEDBCAB
13 1 3 subcld φAC
14 13 abscld φAC
15 2 3 subcld φBC
16 15 abscld φBC
17 14 16 readdcld φAC+BC
18 17 adantr φ¬EDACEDBCAC+BC
19 2re 2
20 19 a1i φ2
21 5 rpred φE
22 20 21 remulcld φ2E
23 4 abscld φD
24 22 23 remulcld φ2ED
25 24 adantr φ¬EDACEDBC2ED
26 1 2 3 abs3difd φABAC+CB
27 3 2 abssubd φCB=BC
28 27 oveq2d φAC+CB=AC+BC
29 26 28 breqtrd φABAC+BC
30 29 adantr φ¬EDACEDBCABAC+BC
31 14 adantr φ¬EDACEDBCAC
32 16 adantr φ¬EDACEDBCBC
33 21 23 remulcld φED
34 33 adantr φ¬EDACEDBCED
35 pm2.45 ¬EDACEDBC¬EDAC
36 35 adantl φ¬EDACEDBC¬EDAC
37 14 33 ltnled φAC<ED¬EDAC
38 37 adantr φ¬EDACEDBCAC<ED¬EDAC
39 36 38 mpbird φ¬EDACEDBCAC<ED
40 pm2.46 ¬EDACEDBC¬EDBC
41 40 adantl φ¬EDACEDBC¬EDBC
42 16 33 ltnled φBC<ED¬EDBC
43 42 adantr φ¬EDACEDBCBC<ED¬EDBC
44 41 43 mpbird φ¬EDACEDBCBC<ED
45 31 32 34 34 39 44 lt2addd φ¬EDACEDBCAC+BC<ED+ED
46 33 recnd φED
47 46 2timesd φ2ED=ED+ED
48 47 eqcomd φED+ED=2ED
49 20 recnd φ2
50 21 recnd φE
51 23 recnd φD
52 49 50 51 mulassd φ2ED=2ED
53 52 eqcomd φ2ED=2ED
54 48 53 eqtrd φED+ED=2ED
55 54 adantr φ¬EDACEDBCED+ED=2ED
56 45 55 breqtrd φ¬EDACEDBCAC+BC<2ED
57 12 18 25 30 56 lelttrd φ¬EDACEDBCAB<2ED
58 absgt0 DD00<D
59 4 58 syl φD00<D
60 6 59 mpbid φ0<D
61 23 60 jca φD0<D
62 11 22 61 3jca φAB2ED0<D
63 ltdivmul2 AB2ED0<DABD<2EAB<2ED
64 62 63 syl φABD<2EAB<2ED
65 64 adantr φ¬EDACEDBCABD<2EAB<2ED
66 57 65 mpbird φ¬EDACEDBCABD<2E
67 10 66 eqbrtrd φ¬EDACEDBCABD<2E
68 8 4 6 divcld φABD
69 68 abscld φABD
70 22 69 lenltd φ2EABD¬ABD<2E
71 7 70 mpbid φ¬ABD<2E
72 71 adantr φ¬EDACEDBC¬ABD<2E
73 67 72 condan φEDACEDBC