Step |
Hyp |
Ref |
Expression |
1 |
|
unbdqndv2lem1.a |
|
2 |
|
unbdqndv2lem1.b |
|
3 |
|
unbdqndv2lem1.c |
|
4 |
|
unbdqndv2lem1.d |
|
5 |
|
unbdqndv2lem1.e |
|
6 |
|
unbdqndv2lem1.1 |
|
7 |
|
unbdqndv2lem1.2 |
|
8 |
1 2
|
subcld |
|
9 |
8 4 6
|
absdivd |
|
10 |
9
|
adantr |
|
11 |
8
|
abscld |
|
12 |
11
|
adantr |
|
13 |
1 3
|
subcld |
|
14 |
13
|
abscld |
|
15 |
2 3
|
subcld |
|
16 |
15
|
abscld |
|
17 |
14 16
|
readdcld |
|
18 |
17
|
adantr |
|
19 |
|
2re |
|
20 |
19
|
a1i |
|
21 |
5
|
rpred |
|
22 |
20 21
|
remulcld |
|
23 |
4
|
abscld |
|
24 |
22 23
|
remulcld |
|
25 |
24
|
adantr |
|
26 |
1 2 3
|
abs3difd |
|
27 |
3 2
|
abssubd |
|
28 |
27
|
oveq2d |
|
29 |
26 28
|
breqtrd |
|
30 |
29
|
adantr |
|
31 |
14
|
adantr |
|
32 |
16
|
adantr |
|
33 |
21 23
|
remulcld |
|
34 |
33
|
adantr |
|
35 |
|
pm2.45 |
|
36 |
35
|
adantl |
|
37 |
14 33
|
ltnled |
|
38 |
37
|
adantr |
|
39 |
36 38
|
mpbird |
|
40 |
|
pm2.46 |
|
41 |
40
|
adantl |
|
42 |
16 33
|
ltnled |
|
43 |
42
|
adantr |
|
44 |
41 43
|
mpbird |
|
45 |
31 32 34 34 39 44
|
lt2addd |
|
46 |
33
|
recnd |
|
47 |
46
|
2timesd |
|
48 |
47
|
eqcomd |
|
49 |
20
|
recnd |
|
50 |
21
|
recnd |
|
51 |
23
|
recnd |
|
52 |
49 50 51
|
mulassd |
|
53 |
52
|
eqcomd |
|
54 |
48 53
|
eqtrd |
|
55 |
54
|
adantr |
|
56 |
45 55
|
breqtrd |
|
57 |
12 18 25 30 56
|
lelttrd |
|
58 |
|
absgt0 |
|
59 |
4 58
|
syl |
|
60 |
6 59
|
mpbid |
|
61 |
23 60
|
jca |
|
62 |
11 22 61
|
3jca |
|
63 |
|
ltdivmul2 |
|
64 |
62 63
|
syl |
|
65 |
64
|
adantr |
|
66 |
57 65
|
mpbird |
|
67 |
10 66
|
eqbrtrd |
|
68 |
8 4 6
|
divcld |
|
69 |
68
|
abscld |
|
70 |
22 69
|
lenltd |
|
71 |
7 70
|
mpbid |
|
72 |
71
|
adantr |
|
73 |
67 72
|
condan |
|