Description: Lemma for unbnn . The value of the function F belongs to the unbounded set of natural numbers A . (Contributed by NM, 3-Dec-2003)
Ref | Expression | ||
---|---|---|---|
Hypothesis | unblem.2 | |
|
Assertion | unblem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unblem.2 | |
|
2 | fveq2 | |
|
3 | 2 | eleq1d | |
4 | fveq2 | |
|
5 | 4 | eleq1d | |
6 | fveq2 | |
|
7 | 6 | eleq1d | |
8 | omsson | |
|
9 | sstr | |
|
10 | 8 9 | mpan2 | |
11 | peano1 | |
|
12 | eleq1 | |
|
13 | 12 | rexbidv | |
14 | 13 | rspcv | |
15 | 11 14 | ax-mp | |
16 | df-rex | |
|
17 | 15 16 | sylib | |
18 | exsimpl | |
|
19 | 17 18 | syl | |
20 | n0 | |
|
21 | 19 20 | sylibr | |
22 | onint | |
|
23 | 10 21 22 | syl2an | |
24 | 1 | fveq1i | |
25 | fr0g | |
|
26 | 24 25 | eqtr2id | |
27 | 26 | eleq1d | |
28 | 27 | ibi | |
29 | 23 28 | syl | |
30 | unblem1 | |
|
31 | suceq | |
|
32 | 31 | difeq2d | |
33 | 32 | inteqd | |
34 | suceq | |
|
35 | 34 | difeq2d | |
36 | 35 | inteqd | |
37 | 1 33 36 | frsucmpt2 | |
38 | 37 | eqcomd | |
39 | 38 | eleq1d | |
40 | 39 | ex | |
41 | 40 | ibd | |
42 | 30 41 | syl5 | |
43 | 42 | expd | |
44 | 3 5 7 29 43 | finds2 | |
45 | 44 | com12 | |