| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vn0 |
|
| 2 |
|
inteq |
|
| 3 |
|
int0 |
|
| 4 |
2 3
|
eqtrdi |
|
| 5 |
4
|
adantl |
|
| 6 |
|
unieq |
|
| 7 |
|
uni0 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
|
eqeq1 |
|
| 10 |
8 9
|
imbitrid |
|
| 11 |
10
|
imp |
|
| 12 |
5 11
|
eqtr3d |
|
| 13 |
12
|
ex |
|
| 14 |
13
|
necon3d |
|
| 15 |
1 14
|
mpi |
|
| 16 |
|
n0 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
|
vex |
|
| 19 |
|
vex |
|
| 20 |
18 19
|
prss |
|
| 21 |
|
uniss |
|
| 22 |
21
|
adantl |
|
| 23 |
|
simpl |
|
| 24 |
22 23
|
sseqtrd |
|
| 25 |
|
intss |
|
| 26 |
25
|
adantl |
|
| 27 |
24 26
|
sstrd |
|
| 28 |
18 19
|
unipr |
|
| 29 |
18 19
|
intpr |
|
| 30 |
27 28 29
|
3sstr3g |
|
| 31 |
|
inss1 |
|
| 32 |
|
ssun1 |
|
| 33 |
31 32
|
sstri |
|
| 34 |
|
eqss |
|
| 35 |
|
uneqin |
|
| 36 |
34 35
|
bitr3i |
|
| 37 |
30 33 36
|
sylanblc |
|
| 38 |
37
|
ex |
|
| 39 |
20 38
|
biimtrid |
|
| 40 |
39
|
alrimivv |
|
| 41 |
17 40
|
jca |
|
| 42 |
|
euabsn |
|
| 43 |
|
eleq1w |
|
| 44 |
43
|
eu4 |
|
| 45 |
|
abid2 |
|
| 46 |
45
|
eqeq1i |
|
| 47 |
46
|
exbii |
|
| 48 |
42 44 47
|
3bitr3i |
|
| 49 |
41 48
|
sylib |
|
| 50 |
|
unisnv |
|
| 51 |
|
unieq |
|
| 52 |
|
inteq |
|
| 53 |
18
|
intsn |
|
| 54 |
52 53
|
eqtrdi |
|
| 55 |
50 51 54
|
3eqtr4a |
|
| 56 |
55
|
exlimiv |
|
| 57 |
49 56
|
impbii |
|