Metamath Proof Explorer


Theorem uniintsn

Description: Two ways to express " A is a singleton". See also en1 , en1b , card1 , and eusn . (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion uniintsn A=AxA=x

Proof

Step Hyp Ref Expression
1 vn0 V
2 inteq A=A=
3 int0 =V
4 2 3 eqtrdi A=A=V
5 4 adantl A=AA=A=V
6 unieq A=A=
7 uni0 =
8 6 7 eqtrdi A=A=
9 eqeq1 A=AA=A=
10 8 9 imbitrid A=AA=A=
11 10 imp A=AA=A=
12 5 11 eqtr3d A=AA=V=
13 12 ex A=AA=V=
14 13 necon3d A=AVA
15 1 14 mpi A=AA
16 n0 AxxA
17 15 16 sylib A=AxxA
18 vex xV
19 vex yV
20 18 19 prss xAyAxyA
21 uniss xyAxyA
22 21 adantl A=AxyAxyA
23 simpl A=AxyAA=A
24 22 23 sseqtrd A=AxyAxyA
25 intss xyAAxy
26 25 adantl A=AxyAAxy
27 24 26 sstrd A=AxyAxyxy
28 18 19 unipr xy=xy
29 18 19 intpr xy=xy
30 27 28 29 3sstr3g A=AxyAxyxy
31 inss1 xyx
32 ssun1 xxy
33 31 32 sstri xyxy
34 eqss xy=xyxyxyxyxy
35 uneqin xy=xyx=y
36 34 35 bitr3i xyxyxyxyx=y
37 30 33 36 sylanblc A=AxyAx=y
38 37 ex A=AxyAx=y
39 20 38 biimtrid A=AxAyAx=y
40 39 alrimivv A=AxyxAyAx=y
41 17 40 jca A=AxxAxyxAyAx=y
42 euabsn ∃!xxAxx|xA=x
43 eleq1w x=yxAyA
44 43 eu4 ∃!xxAxxAxyxAyAx=y
45 abid2 x|xA=A
46 45 eqeq1i x|xA=xA=x
47 46 exbii xx|xA=xxA=x
48 42 44 47 3bitr3i xxAxyxAyAx=yxA=x
49 41 48 sylib A=AxA=x
50 unisnv x=x
51 unieq A=xA=x
52 inteq A=xA=x
53 18 intsn x=x
54 52 53 eqtrdi A=xA=x
55 50 51 54 3eqtr4a A=xA=A
56 55 exlimiv xA=xA=A
57 49 56 impbii A=AxA=x