| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brwdom3i |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
|
brwdom3i |
|
| 4 |
3
|
3ad2ant2 |
|
| 5 |
4
|
adantr |
|
| 6 |
|
relwdom |
|
| 7 |
6
|
brrelex1i |
|
| 8 |
6
|
brrelex1i |
|
| 9 |
|
unexg |
|
| 10 |
7 8 9
|
syl2an |
|
| 11 |
10
|
3adant3 |
|
| 12 |
11
|
adantr |
|
| 13 |
6
|
brrelex2i |
|
| 14 |
6
|
brrelex2i |
|
| 15 |
|
unexg |
|
| 16 |
13 14 15
|
syl2an |
|
| 17 |
16
|
3adant3 |
|
| 18 |
17
|
adantr |
|
| 19 |
|
elun |
|
| 20 |
|
eqeq1 |
|
| 21 |
20
|
rexbidv |
|
| 22 |
21
|
rspcva |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
cbvrexvw |
|
| 26 |
|
ssun1 |
|
| 27 |
|
iftrue |
|
| 28 |
27
|
fveq1d |
|
| 29 |
28
|
eqeq2d |
|
| 30 |
29
|
biimprd |
|
| 31 |
30
|
reximia |
|
| 32 |
|
ssrexv |
|
| 33 |
26 31 32
|
mpsyl |
|
| 34 |
25 33
|
sylbi |
|
| 35 |
22 34
|
syl |
|
| 36 |
35
|
ancoms |
|
| 37 |
36
|
adantlr |
|
| 38 |
37
|
adantll |
|
| 39 |
|
eqeq1 |
|
| 40 |
39
|
rexbidv |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
42
|
cbvrexvw |
|
| 44 |
40 43
|
bitrdi |
|
| 45 |
44
|
rspccva |
|
| 46 |
|
ssun2 |
|
| 47 |
|
minel |
|
| 48 |
47
|
ancoms |
|
| 49 |
48
|
iffalsed |
|
| 50 |
49
|
fveq1d |
|
| 51 |
50
|
eqeq2d |
|
| 52 |
51
|
biimprd |
|
| 53 |
52
|
reximdva |
|
| 54 |
53
|
imp |
|
| 55 |
|
ssrexv |
|
| 56 |
46 54 55
|
mpsyl |
|
| 57 |
45 56
|
sylan2 |
|
| 58 |
57
|
anassrs |
|
| 59 |
58
|
adantlrl |
|
| 60 |
38 59
|
jaodan |
|
| 61 |
19 60
|
sylan2b |
|
| 62 |
61
|
expl |
|
| 63 |
62
|
3ad2ant3 |
|
| 64 |
63
|
impl |
|
| 65 |
12 18 64
|
wdom2d |
|
| 66 |
65
|
expr |
|
| 67 |
66
|
exlimdv |
|
| 68 |
5 67
|
mpd |
|
| 69 |
2 68
|
exlimddv |
|