| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzfissfz.m |
|
| 2 |
|
uzfissfz.z |
|
| 3 |
|
uzfissfz.a |
|
| 4 |
|
uzfissfz.fi |
|
| 5 |
|
uzid |
|
| 6 |
1 5
|
syl |
|
| 7 |
2
|
a1i |
|
| 8 |
7
|
eqcomd |
|
| 9 |
6 8
|
eleqtrd |
|
| 10 |
9
|
adantr |
|
| 11 |
|
id |
|
| 12 |
|
0ss |
|
| 13 |
12
|
a1i |
|
| 14 |
11 13
|
eqsstrd |
|
| 15 |
14
|
adantl |
|
| 16 |
|
oveq2 |
|
| 17 |
16
|
sseq2d |
|
| 18 |
17
|
rspcev |
|
| 19 |
10 15 18
|
syl2anc |
|
| 20 |
3
|
adantr |
|
| 21 |
|
uzssz |
|
| 22 |
2 21
|
eqsstri |
|
| 23 |
22
|
a1i |
|
| 24 |
3 23
|
sstrd |
|
| 25 |
24
|
adantr |
|
| 26 |
11
|
necon3bi |
|
| 27 |
26
|
adantl |
|
| 28 |
4
|
adantr |
|
| 29 |
|
suprfinzcl |
|
| 30 |
25 27 28 29
|
syl3anc |
|
| 31 |
20 30
|
sseldd |
|
| 32 |
1
|
ad2antrr |
|
| 33 |
22 31
|
sselid |
|
| 34 |
33
|
adantr |
|
| 35 |
25
|
sselda |
|
| 36 |
3
|
sselda |
|
| 37 |
2
|
a1i |
|
| 38 |
36 37
|
eleqtrd |
|
| 39 |
|
eluzle |
|
| 40 |
38 39
|
syl |
|
| 41 |
40
|
adantlr |
|
| 42 |
|
zssre |
|
| 43 |
24 42
|
sstrdi |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
27
|
adantr |
|
| 46 |
|
fimaxre2 |
|
| 47 |
43 4 46
|
syl2anc |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
|
simpr |
|
| 50 |
|
suprub |
|
| 51 |
44 45 48 49 50
|
syl31anc |
|
| 52 |
32 34 35 41 51
|
elfzd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
dfss3 |
|
| 55 |
53 54
|
sylibr |
|
| 56 |
|
oveq2 |
|
| 57 |
56
|
sseq2d |
|
| 58 |
57
|
rspcev |
|
| 59 |
31 55 58
|
syl2anc |
|
| 60 |
19 59
|
pm2.61dan |
|