Metamath Proof Explorer


Theorem uzrdgfni

Description: The recursive definition generator on upper integers is a function. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
uzrdg.1 AV
uzrdg.2 R=recxV,yVx+1xFyCAω
uzrdg.3 S=ranR
Assertion uzrdgfni SFnC

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 uzrdg.1 AV
4 uzrdg.2 R=recxV,yVx+1xFyCAω
5 uzrdg.3 S=ranR
6 5 eleq2i zSzranR
7 frfnom recxV,yVx+1xFyCAωFnω
8 4 fneq1i RFnωrecxV,yVx+1xFyCAωFnω
9 7 8 mpbir RFnω
10 fvelrnb RFnωzranRwωRw=z
11 9 10 ax-mp zranRwωRw=z
12 6 11 bitri zSwωRw=z
13 1 2 3 4 om2uzrdg wωRw=Gw2ndRw
14 1 2 om2uzuzi wωGwC
15 fvex 2ndRwV
16 opelxpi GwC2ndRwVGw2ndRwC×V
17 14 15 16 sylancl wωGw2ndRwC×V
18 13 17 eqeltrd wωRwC×V
19 eleq1 Rw=zRwC×VzC×V
20 18 19 syl5ibcom wωRw=zzC×V
21 20 rexlimiv wωRw=zzC×V
22 12 21 sylbi zSzC×V
23 22 ssriv SC×V
24 xpss C×VV×V
25 23 24 sstri SV×V
26 df-rel RelSSV×V
27 25 26 mpbir RelS
28 fvex 2ndRG-1vV
29 eqeq2 w=2ndRG-1vz=wz=2ndRG-1v
30 29 imbi2d w=2ndRG-1vvzSz=wvzSz=2ndRG-1v
31 30 albidv w=2ndRG-1vzvzSz=wzvzSz=2ndRG-1v
32 28 31 spcev zvzSz=2ndRG-1vwzvzSz=w
33 5 eleq2i vzSvzranR
34 fvelrnb RFnωvzranRwωRw=vz
35 9 34 ax-mp vzranRwωRw=vz
36 33 35 bitri vzSwωRw=vz
37 13 eqeq1d wωRw=vzGw2ndRw=vz
38 fvex GwV
39 38 15 opth1 Gw2ndRw=vzGw=v
40 37 39 syl6bi wωRw=vzGw=v
41 1 2 om2uzf1oi G:ω1-1 ontoC
42 f1ocnvfv G:ω1-1 ontoCwωGw=vG-1v=w
43 41 42 mpan wωGw=vG-1v=w
44 40 43 syld wωRw=vzG-1v=w
45 2fveq3 G-1v=w2ndRG-1v=2ndRw
46 44 45 syl6 wωRw=vz2ndRG-1v=2ndRw
47 46 imp wωRw=vz2ndRG-1v=2ndRw
48 vex vV
49 vex zV
50 48 49 op2ndd Rw=vz2ndRw=z
51 50 adantl wωRw=vz2ndRw=z
52 47 51 eqtr2d wωRw=vzz=2ndRG-1v
53 52 rexlimiva wωRw=vzz=2ndRG-1v
54 36 53 sylbi vzSz=2ndRG-1v
55 32 54 mpg wzvzSz=w
56 55 ax-gen vwzvzSz=w
57 dffun5 FunSRelSvwzvzSz=w
58 27 56 57 mpbir2an FunS
59 dmss SC×VdomSdomC×V
60 23 59 ax-mp domSdomC×V
61 dmxpss domC×VC
62 60 61 sstri domSC
63 1 2 3 4 uzrdglem vCv2ndRG-1vranR
64 63 5 eleqtrrdi vCv2ndRG-1vS
65 48 28 opeldm v2ndRG-1vSvdomS
66 64 65 syl vCvdomS
67 66 ssriv CdomS
68 62 67 eqssi domS=C
69 df-fn SFnCFunSdomS=C
70 58 68 69 mpbir2an SFnC