Metamath Proof Explorer


Theorem uzsubsubfz

Description: Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018)

Ref Expression
Assertion uzsubsubfz L M N L N L M M N

Proof

Step Hyp Ref Expression
1 eluz2 L M M L M L
2 eluz2 N L L N L N
3 simpr L N M M
4 simpr L N N
5 4 adantr L N M N
6 zsubcl L M L M
7 6 adantlr L N M L M
8 5 7 zsubcld L N M N L M
9 3 5 8 3jca L N M M N N L M
10 9 ex L N M M N N L M
11 10 3adant3 L N L N M M N N L M
12 11 com12 M L N L N M N N L M
13 12 adantr M M L L N L N M N N L M
14 13 imp M M L L N L N M N N L M
15 zre N N
16 15 adantl L N N
17 16 adantr L N M M L N
18 zre L L
19 18 adantr L N L
20 19 adantr L N M M L L
21 17 20 subge0d L N M M L 0 N L L N
22 21 exbiri L N M M L L N 0 N L
23 22 com23 L N L N M M L 0 N L
24 23 3impia L N L N M M L 0 N L
25 24 impcom M M L L N L N 0 N L
26 zre M M
27 26 adantr M M L M
28 27 adantr M M L L N L N M
29 resubcl N L N L
30 15 18 29 syl2anr L N N L
31 30 3adant3 L N L N N L
32 31 adantl M M L L N L N N L
33 28 32 addge02d M M L L N L N 0 N L M N - L + M
34 25 33 mpbid M M L L N L N M N - L + M
35 zcn N N
36 35 3ad2ant2 L N L N N
37 36 adantl M M L L N L N N
38 zcn L L
39 38 3ad2ant1 L N L N L
40 39 adantl M M L L N L N L
41 zcn M M
42 41 adantr M M L M
43 42 adantr M M L L N L N M
44 37 40 43 subsubd M M L L N L N N L M = N - L + M
45 34 44 breqtrrd M M L L N L N M N L M
46 18 3ad2ant1 L N L N L
47 subge0 L M 0 L M M L
48 46 26 47 syl2anr M L N L N 0 L M M L
49 48 exbiri M L N L N M L 0 L M
50 49 com23 M M L L N L N 0 L M
51 50 imp31 M M L L N L N 0 L M
52 15 3ad2ant2 L N L N N
53 52 adantl M M L L N L N N
54 resubcl L M L M
55 46 27 54 syl2anr M M L L N L N L M
56 53 55 subge02d M M L L N L N 0 L M N L M N
57 51 56 mpbid M M L L N L N N L M N
58 45 57 jca M M L L N L N M N L M N L M N
59 elfz2 N L M M N M N N L M M N L M N L M N
60 14 58 59 sylanbrc M M L L N L N N L M M N
61 60 ex M M L L N L N N L M M N
62 61 3adant2 M L M L L N L N N L M M N
63 2 62 syl5bi M L M L N L N L M M N
64 1 63 sylbi L M N L N L M M N
65 64 imp L M N L N L M M N