| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2 |
|
| 2 |
|
eluz2 |
|
| 3 |
|
simpr |
|
| 4 |
|
simpr |
|
| 5 |
4
|
adantr |
|
| 6 |
|
zsubcl |
|
| 7 |
6
|
adantlr |
|
| 8 |
5 7
|
zsubcld |
|
| 9 |
3 5 8
|
3jca |
|
| 10 |
9
|
ex |
|
| 11 |
10
|
3adant3 |
|
| 12 |
11
|
com12 |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
imp |
|
| 15 |
|
zre |
|
| 16 |
15
|
adantl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
zre |
|
| 19 |
18
|
adantr |
|
| 20 |
19
|
adantr |
|
| 21 |
17 20
|
subge0d |
|
| 22 |
21
|
exbiri |
|
| 23 |
22
|
com23 |
|
| 24 |
23
|
3impia |
|
| 25 |
24
|
impcom |
|
| 26 |
|
zre |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
adantr |
|
| 29 |
|
resubcl |
|
| 30 |
15 18 29
|
syl2anr |
|
| 31 |
30
|
3adant3 |
|
| 32 |
31
|
adantl |
|
| 33 |
28 32
|
addge02d |
|
| 34 |
25 33
|
mpbid |
|
| 35 |
|
zcn |
|
| 36 |
35
|
3ad2ant2 |
|
| 37 |
36
|
adantl |
|
| 38 |
|
zcn |
|
| 39 |
38
|
3ad2ant1 |
|
| 40 |
39
|
adantl |
|
| 41 |
|
zcn |
|
| 42 |
41
|
adantr |
|
| 43 |
42
|
adantr |
|
| 44 |
37 40 43
|
subsubd |
|
| 45 |
34 44
|
breqtrrd |
|
| 46 |
18
|
3ad2ant1 |
|
| 47 |
|
subge0 |
|
| 48 |
46 26 47
|
syl2anr |
|
| 49 |
48
|
exbiri |
|
| 50 |
49
|
com23 |
|
| 51 |
50
|
imp31 |
|
| 52 |
15
|
3ad2ant2 |
|
| 53 |
52
|
adantl |
|
| 54 |
|
resubcl |
|
| 55 |
46 27 54
|
syl2anr |
|
| 56 |
53 55
|
subge02d |
|
| 57 |
51 56
|
mpbid |
|
| 58 |
45 57
|
jca |
|
| 59 |
|
elfz2 |
|
| 60 |
14 58 59
|
sylanbrc |
|
| 61 |
60
|
ex |
|
| 62 |
61
|
3adant2 |
|
| 63 |
2 62
|
biimtrid |
|
| 64 |
1 63
|
sylbi |
|
| 65 |
64
|
imp |
|