Metamath Proof Explorer


Theorem uzsubsubfz

Description: Membership of an integer greater than L decreased by ( L - M ) in an M-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018)

Ref Expression
Assertion uzsubsubfz LMNLNLMMN

Proof

Step Hyp Ref Expression
1 eluz2 LMMLML
2 eluz2 NLLNLN
3 simpr LNMM
4 simpr LNN
5 4 adantr LNMN
6 zsubcl LMLM
7 6 adantlr LNMLM
8 5 7 zsubcld LNMNLM
9 3 5 8 3jca LNMMNNLM
10 9 ex LNMMNNLM
11 10 3adant3 LNLNMMNNLM
12 11 com12 MLNLNMNNLM
13 12 adantr MMLLNLNMNNLM
14 13 imp MMLLNLNMNNLM
15 zre NN
16 15 adantl LNN
17 16 adantr LNMMLN
18 zre LL
19 18 adantr LNL
20 19 adantr LNMMLL
21 17 20 subge0d LNMML0NLLN
22 21 exbiri LNMMLLN0NL
23 22 com23 LNLNMML0NL
24 23 3impia LNLNMML0NL
25 24 impcom MMLLNLN0NL
26 zre MM
27 26 adantr MMLM
28 27 adantr MMLLNLNM
29 resubcl NLNL
30 15 18 29 syl2anr LNNL
31 30 3adant3 LNLNNL
32 31 adantl MMLLNLNNL
33 28 32 addge02d MMLLNLN0NLMN-L+M
34 25 33 mpbid MMLLNLNMN-L+M
35 zcn NN
36 35 3ad2ant2 LNLNN
37 36 adantl MMLLNLNN
38 zcn LL
39 38 3ad2ant1 LNLNL
40 39 adantl MMLLNLNL
41 zcn MM
42 41 adantr MMLM
43 42 adantr MMLLNLNM
44 37 40 43 subsubd MMLLNLNNLM=N-L+M
45 34 44 breqtrrd MMLLNLNMNLM
46 18 3ad2ant1 LNLNL
47 subge0 LM0LMML
48 46 26 47 syl2anr MLNLN0LMML
49 48 exbiri MLNLNML0LM
50 49 com23 MMLLNLN0LM
51 50 imp31 MMLLNLN0LM
52 15 3ad2ant2 LNLNN
53 52 adantl MMLLNLNN
54 resubcl LMLM
55 46 27 54 syl2anr MMLLNLNLM
56 53 55 subge02d MMLLNLN0LMNLMN
57 51 56 mpbid MMLLNLNNLMN
58 45 57 jca MMLLNLNMNLMNLMN
59 elfz2 NLMMNMNNLMMNLMNLMN
60 14 58 59 sylanbrc MMLLNLNNLMMN
61 60 ex MMLLNLNNLMMN
62 61 3adant2 MLMLLNLNNLMMN
63 2 62 biimtrid MLMLNLNLMMN
64 1 63 sylbi LMNLNLMMN
65 64 imp LMNLNLMMN