Metamath Proof Explorer


Theorem uzwo3

Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. This generalization of uzwo2 allows the lower bound B to be any real number. See also nnwo and nnwos . (Contributed by NM, 12-Nov-2004) (Proof shortened by Mario Carneiro, 2-Oct-2015) (Proof shortened by AV, 27-Sep-2020)

Ref Expression
Assertion uzwo3 B A z | B z A ∃! x A y A x y

Proof

Step Hyp Ref Expression
1 renegcl B B
2 1 adantr B A z | B z A B
3 arch B n B < n
4 2 3 syl B A z | B z A n B < n
5 simplrl B A z | B z A n B < n A z | B z
6 simplrl B n B < n z B z n
7 nnnegz n n
8 6 7 syl B n B < n z B z n
9 8 zred B n B < n z B z n
10 simprl B n B < n z B z z
11 10 zred B n B < n z B z z
12 simpll B n B < n z B z B
13 6 nnred B n B < n z B z n
14 simplrr B n B < n z B z B < n
15 12 13 14 ltnegcon1d B n B < n z B z n < B
16 simprr B n B < n z B z B z
17 9 12 11 15 16 ltletrd B n B < n z B z n < z
18 9 11 17 ltled B n B < n z B z n z
19 eluz n z z n n z
20 8 10 19 syl2anc B n B < n z B z z n n z
21 18 20 mpbird B n B < n z B z z n
22 21 expr B n B < n z B z z n
23 22 ralrimiva B n B < n z B z z n
24 rabss z | B z n z B z z n
25 23 24 sylibr B n B < n z | B z n
26 25 adantlr B A z | B z A n B < n z | B z n
27 5 26 sstrd B A z | B z A n B < n A n
28 simplrr B A z | B z A n B < n A
29 infssuzcl A n A sup A < A
30 27 28 29 syl2anc B A z | B z A n B < n sup A < A
31 infssuzle A n y A sup A < y
32 27 31 sylan B A z | B z A n B < n y A sup A < y
33 32 ralrimiva B A z | B z A n B < n y A sup A < y
34 breq2 y = sup A < x y x sup A <
35 simprr B A z | B z A n B < n x A y A x y y A x y
36 30 adantr B A z | B z A n B < n x A y A x y sup A < A
37 34 35 36 rspcdva B A z | B z A n B < n x A y A x y x sup A <
38 27 adantr B A z | B z A n B < n x A y A x y A n
39 simprl B A z | B z A n B < n x A y A x y x A
40 infssuzle A n x A sup A < x
41 38 39 40 syl2anc B A z | B z A n B < n x A y A x y sup A < x
42 uzssz n
43 zssre
44 42 43 sstri n
45 27 44 sstrdi B A z | B z A n B < n A
46 45 adantr B A z | B z A n B < n x A y A x y A
47 46 39 sseldd B A z | B z A n B < n x A y A x y x
48 45 30 sseldd B A z | B z A n B < n sup A <
49 48 adantr B A z | B z A n B < n x A y A x y sup A <
50 47 49 letri3d B A z | B z A n B < n x A y A x y x = sup A < x sup A < sup A < x
51 37 41 50 mpbir2and B A z | B z A n B < n x A y A x y x = sup A <
52 51 expr B A z | B z A n B < n x A y A x y x = sup A <
53 52 ralrimiva B A z | B z A n B < n x A y A x y x = sup A <
54 breq1 x = sup A < x y sup A < y
55 54 ralbidv x = sup A < y A x y y A sup A < y
56 55 eqreu sup A < A y A sup A < y x A y A x y x = sup A < ∃! x A y A x y
57 30 33 53 56 syl3anc B A z | B z A n B < n ∃! x A y A x y
58 4 57 rexlimddv B A z | B z A ∃! x A y A x y