Description: Alternate proof of vfermltl , not using Euler's theorem. (Contributed by AV, 21-Aug-2020) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | vfermltlALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2m1e1 | |
|
2 | 1 | a1i | |
3 | 2 | eqcomd | |
4 | 3 | oveq2d | |
5 | prmz | |
|
6 | 5 | zcnd | |
7 | 2cnd | |
|
8 | 1cnd | |
|
9 | 6 7 8 | subsubd | |
10 | 4 9 | eqtrd | |
11 | 10 | 3ad2ant1 | |
12 | 11 | oveq2d | |
13 | zcn | |
|
14 | 13 | 3ad2ant2 | |
15 | prmm2nn0 | |
|
16 | 15 | 3ad2ant1 | |
17 | 14 16 | expp1d | |
18 | 12 17 | eqtrd | |
19 | 18 | oveq1d | |
20 | 15 | anim1i | |
21 | 20 | ancomd | |
22 | zexpcl | |
|
23 | 21 22 | syl | |
24 | 23 | zred | |
25 | 24 | 3adant3 | |
26 | simp2 | |
|
27 | prmnn | |
|
28 | 27 | nnrpd | |
29 | 28 | 3ad2ant1 | |
30 | modmulmod | |
|
31 | 25 26 29 30 | syl3anc | |
32 | zre | |
|
33 | 32 | adantl | |
34 | 15 | adantr | |
35 | 33 34 | reexpcld | |
36 | 28 | adantr | |
37 | 35 36 | modcld | |
38 | 37 | recnd | |
39 | 13 | adantl | |
40 | 38 39 | mulcomd | |
41 | 40 | 3adant3 | |
42 | 41 | oveq1d | |
43 | 19 31 42 | 3eqtr2d | |
44 | eqid | |
|
45 | 44 | modprminv | |
46 | 45 | simprd | |
47 | 43 46 | eqtrd | |