Metamath Proof Explorer


Theorem vitalilem1

Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by AV, 1-May-2021)

Ref Expression
Hypothesis vitali.1 ˙=xy|x01y01xy
Assertion vitalilem1 ˙Er01

Proof

Step Hyp Ref Expression
1 vitali.1 ˙=xy|x01y01xy
2 1 relopabiv Rel˙
3 simplr u01v01uvv01
4 simpll u01v01uvu01
5 unitssre 01
6 5 sseli u01u
7 6 recnd u01u
8 7 ad2antrr u01v01uvu
9 5 sseli v01v
10 9 recnd v01v
11 10 ad2antlr u01v01uvv
12 8 11 negsubdi2d u01v01uvuv=vu
13 qnegcl uvuv
14 13 adantl u01v01uvuv
15 12 14 eqeltrrd u01v01uvvu
16 3 4 15 jca31 u01v01uvv01u01vu
17 oveq12 x=uy=vxy=uv
18 17 eleq1d x=uy=vxyuv
19 18 1 brab2a u˙vu01v01uv
20 oveq12 x=vy=uxy=vu
21 20 eleq1d x=vy=uxyvu
22 21 1 brab2a v˙uv01u01vu
23 16 19 22 3imtr4i u˙vv˙u
24 simpl u˙vv˙wu˙v
25 24 19 sylib u˙vv˙wu01v01uv
26 25 simpld u˙vv˙wu01v01
27 26 simpld u˙vv˙wu01
28 simpr u˙vv˙wv˙w
29 oveq12 x=vy=wxy=vw
30 29 eleq1d x=vy=wxyvw
31 30 1 brab2a v˙wv01w01vw
32 28 31 sylib u˙vv˙wv01w01vw
33 32 simpld u˙vv˙wv01w01
34 33 simprd u˙vv˙ww01
35 27 7 syl u˙vv˙wu
36 25 11 syl u˙vv˙wv
37 5 34 sselid u˙vv˙ww
38 37 recnd u˙vv˙ww
39 35 36 38 npncand u˙vv˙wuv+v-w=uw
40 25 simprd u˙vv˙wuv
41 32 simprd u˙vv˙wvw
42 qaddcl uvvwuv+v-w
43 40 41 42 syl2anc u˙vv˙wuv+v-w
44 39 43 eqeltrrd u˙vv˙wuw
45 oveq12 x=uy=wxy=uw
46 45 eleq1d x=uy=wxyuw
47 46 1 brab2a u˙wu01w01uw
48 27 34 44 47 syl21anbrc u˙vv˙wu˙w
49 7 subidd u01uu=0
50 0z 0
51 zq 00
52 50 51 ax-mp 0
53 49 52 eqeltrdi u01uu
54 53 adantr u01u01uu
55 54 pm4.71i u01u01u01u01uu
56 pm4.24 u01u01u01
57 oveq12 x=uy=uxy=uu
58 57 eleq1d x=uy=uxyuu
59 58 1 brab2a u˙uu01u01uu
60 55 56 59 3bitr4i u01u˙u
61 2 23 48 60 iseri ˙Er01