| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vitali.1 |
|
| 2 |
|
vitali.2 |
|
| 3 |
|
vitali.3 |
|
| 4 |
|
vitali.4 |
|
| 5 |
|
vitali.5 |
|
| 6 |
|
vitali.6 |
|
| 7 |
|
vitali.7 |
|
| 8 |
|
neeq1 |
|
| 9 |
1
|
vitalilem1 |
|
| 10 |
|
erdm |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
11
|
eleq2i |
|
| 13 |
|
ecdmn0 |
|
| 14 |
12 13
|
bitr3i |
|
| 15 |
14
|
biimpi |
|
| 16 |
2 8 15
|
ectocl |
|
| 17 |
16
|
adantl |
|
| 18 |
|
sseq1 |
|
| 19 |
9
|
a1i |
|
| 20 |
19
|
ecss |
|
| 21 |
2 18 20
|
ectocl |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
sseld |
|
| 24 |
17 23
|
embantd |
|
| 25 |
24
|
ralimdva |
|
| 26 |
4 25
|
mpd |
|
| 27 |
|
ffnfv |
|
| 28 |
3 26 27
|
sylanbrc |
|
| 29 |
28
|
frnd |
|
| 30 |
5
|
adantr |
|
| 31 |
|
f1ocnv |
|
| 32 |
|
f1of |
|
| 33 |
30 31 32
|
3syl |
|
| 34 |
|
simpr |
|
| 35 |
34 14
|
sylib |
|
| 36 |
|
neeq1 |
|
| 37 |
|
fveq2 |
|
| 38 |
|
id |
|
| 39 |
37 38
|
eleq12d |
|
| 40 |
36 39
|
imbi12d |
|
| 41 |
4
|
adantr |
|
| 42 |
|
ovex |
|
| 43 |
|
erex |
|
| 44 |
9 42 43
|
mp2 |
|
| 45 |
44
|
ecelqsi |
|
| 46 |
45
|
adantl |
|
| 47 |
46 2
|
eleqtrrdi |
|
| 48 |
40 41 47
|
rspcdva |
|
| 49 |
35 48
|
mpd |
|
| 50 |
|
fvex |
|
| 51 |
|
vex |
|
| 52 |
50 51
|
elec |
|
| 53 |
|
oveq12 |
|
| 54 |
53
|
eleq1d |
|
| 55 |
54 1
|
brab2a |
|
| 56 |
52 55
|
bitri |
|
| 57 |
49 56
|
sylib |
|
| 58 |
57
|
simprd |
|
| 59 |
|
elicc01 |
|
| 60 |
34 59
|
sylib |
|
| 61 |
60
|
simp1d |
|
| 62 |
57
|
simpld |
|
| 63 |
62
|
simprd |
|
| 64 |
|
elicc01 |
|
| 65 |
63 64
|
sylib |
|
| 66 |
65
|
simp1d |
|
| 67 |
61 66
|
resubcld |
|
| 68 |
66 61
|
resubcld |
|
| 69 |
|
1red |
|
| 70 |
60
|
simp2d |
|
| 71 |
66 61
|
subge02d |
|
| 72 |
70 71
|
mpbid |
|
| 73 |
65
|
simp3d |
|
| 74 |
68 66 69 72 73
|
letrd |
|
| 75 |
68 69
|
lenegd |
|
| 76 |
74 75
|
mpbid |
|
| 77 |
66
|
recnd |
|
| 78 |
61
|
recnd |
|
| 79 |
77 78
|
negsubdi2d |
|
| 80 |
76 79
|
breqtrd |
|
| 81 |
65
|
simp2d |
|
| 82 |
61 66
|
subge02d |
|
| 83 |
81 82
|
mpbid |
|
| 84 |
60
|
simp3d |
|
| 85 |
67 61 69 83 84
|
letrd |
|
| 86 |
|
neg1rr |
|
| 87 |
|
1re |
|
| 88 |
86 87
|
elicc2i |
|
| 89 |
67 80 85 88
|
syl3anbrc |
|
| 90 |
58 89
|
elind |
|
| 91 |
33 90
|
ffvelcdmd |
|
| 92 |
|
oveq1 |
|
| 93 |
92
|
eleq1d |
|
| 94 |
|
f1ocnvfv2 |
|
| 95 |
5 90 94
|
syl2an2r |
|
| 96 |
95
|
oveq2d |
|
| 97 |
78 77
|
nncand |
|
| 98 |
96 97
|
eqtrd |
|
| 99 |
|
fnfvelrn |
|
| 100 |
3 47 99
|
syl2an2r |
|
| 101 |
98 100
|
eqeltrd |
|
| 102 |
93 61 101
|
elrabd |
|
| 103 |
|
fveq2 |
|
| 104 |
103
|
oveq2d |
|
| 105 |
104
|
eleq1d |
|
| 106 |
105
|
rabbidv |
|
| 107 |
|
reex |
|
| 108 |
107
|
rabex |
|
| 109 |
106 6 108
|
fvmpt |
|
| 110 |
91 109
|
syl |
|
| 111 |
102 110
|
eleqtrrd |
|
| 112 |
|
fveq2 |
|
| 113 |
112
|
eliuni |
|
| 114 |
91 111 113
|
syl2anc |
|
| 115 |
114
|
ex |
|
| 116 |
115
|
ssrdv |
|
| 117 |
|
eliun |
|
| 118 |
|
fveq2 |
|
| 119 |
118
|
oveq2d |
|
| 120 |
119
|
eleq1d |
|
| 121 |
120
|
rabbidv |
|
| 122 |
107
|
rabex |
|
| 123 |
121 6 122
|
fvmpt |
|
| 124 |
123
|
adantl |
|
| 125 |
124
|
eleq2d |
|
| 126 |
125
|
biimpa |
|
| 127 |
|
oveq1 |
|
| 128 |
127
|
eleq1d |
|
| 129 |
128
|
elrab |
|
| 130 |
126 129
|
sylib |
|
| 131 |
130
|
simpld |
|
| 132 |
86
|
a1i |
|
| 133 |
|
iccssre |
|
| 134 |
86 87 133
|
mp2an |
|
| 135 |
|
f1of |
|
| 136 |
5 135
|
syl |
|
| 137 |
136
|
ffvelcdmda |
|
| 138 |
137
|
elin2d |
|
| 139 |
134 138
|
sselid |
|
| 140 |
139
|
adantr |
|
| 141 |
138
|
adantr |
|
| 142 |
86 87
|
elicc2i |
|
| 143 |
141 142
|
sylib |
|
| 144 |
143
|
simp2d |
|
| 145 |
29
|
ad2antrr |
|
| 146 |
130
|
simprd |
|
| 147 |
145 146
|
sseldd |
|
| 148 |
|
elicc01 |
|
| 149 |
147 148
|
sylib |
|
| 150 |
149
|
simp2d |
|
| 151 |
131 140
|
subge0d |
|
| 152 |
150 151
|
mpbid |
|
| 153 |
132 140 131 144 152
|
letrd |
|
| 154 |
|
peano2re |
|
| 155 |
140 154
|
syl |
|
| 156 |
|
2re |
|
| 157 |
156
|
a1i |
|
| 158 |
149
|
simp3d |
|
| 159 |
|
1red |
|
| 160 |
131 140 159
|
lesubadd2d |
|
| 161 |
158 160
|
mpbid |
|
| 162 |
143
|
simp3d |
|
| 163 |
140 159 159 162
|
leadd1dd |
|
| 164 |
|
df-2 |
|
| 165 |
163 164
|
breqtrrdi |
|
| 166 |
131 155 157 161 165
|
letrd |
|
| 167 |
86 156
|
elicc2i |
|
| 168 |
131 153 166 167
|
syl3anbrc |
|
| 169 |
168
|
rexlimdva2 |
|
| 170 |
117 169
|
biimtrid |
|
| 171 |
170
|
ssrdv |
|
| 172 |
29 116 171
|
3jca |
|