Metamath Proof Explorer


Theorem vitalilem3

Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses vitali.1 ˙ = x y | x 0 1 y 0 1 x y
vitali.2 S = 0 1 / ˙
vitali.3 φ F Fn S
vitali.4 φ z S z F z z
vitali.5 φ G : 1-1 onto 1 1
vitali.6 T = n s | s G n ran F
vitali.7 φ ¬ ran F 𝒫 dom vol
Assertion vitalilem3 φ Disj m T m

Proof

Step Hyp Ref Expression
1 vitali.1 ˙ = x y | x 0 1 y 0 1 x y
2 vitali.2 S = 0 1 / ˙
3 vitali.3 φ F Fn S
4 vitali.4 φ z S z F z z
5 vitali.5 φ G : 1-1 onto 1 1
6 vitali.6 T = n s | s G n ran F
7 vitali.7 φ ¬ ran F 𝒫 dom vol
8 simprlr φ m w T m k w T k w T m
9 simprll φ m w T m k w T k m
10 fveq2 n = m G n = G m
11 10 oveq2d n = m s G n = s G m
12 11 eleq1d n = m s G n ran F s G m ran F
13 12 rabbidv n = m s | s G n ran F = s | s G m ran F
14 reex V
15 14 rabex s | s G m ran F V
16 13 6 15 fvmpt m T m = s | s G m ran F
17 9 16 syl φ m w T m k w T k T m = s | s G m ran F
18 8 17 eleqtrd φ m w T m k w T k w s | s G m ran F
19 oveq1 s = w s G m = w G m
20 19 eleq1d s = w s G m ran F w G m ran F
21 20 elrab w s | s G m ran F w w G m ran F
22 18 21 sylib φ m w T m k w T k w w G m ran F
23 22 simpld φ m w T m k w T k w
24 23 recnd φ m w T m k w T k w
25 f1of G : 1-1 onto 1 1 G : 1 1
26 5 25 syl φ G : 1 1
27 inss1 1 1
28 fss G : 1 1 1 1 G :
29 26 27 28 sylancl φ G :
30 29 adantr φ m w T m k w T k G :
31 30 9 ffvelrnd φ m w T m k w T k G m
32 qcn G m G m
33 31 32 syl φ m w T m k w T k G m
34 simprrl φ m w T m k w T k k
35 30 34 ffvelrnd φ m w T m k w T k G k
36 qcn G k G k
37 35 36 syl φ m w T m k w T k G k
38 1 vitalilem1 ˙ Er 0 1
39 38 a1i φ m w T m k w T k ˙ Er 0 1
40 1 2 3 4 5 6 7 vitalilem2 φ ran F 0 1 0 1 m T m m T m 1 2
41 40 simp1d φ ran F 0 1
42 41 adantr φ m w T m k w T k ran F 0 1
43 22 simprd φ m w T m k w T k w G m ran F
44 42 43 sseldd φ m w T m k w T k w G m 0 1
45 simprrr φ m w T m k w T k w T k
46 fveq2 n = k G n = G k
47 46 oveq2d n = k s G n = s G k
48 47 eleq1d n = k s G n ran F s G k ran F
49 48 rabbidv n = k s | s G n ran F = s | s G k ran F
50 14 rabex s | s G k ran F V
51 49 6 50 fvmpt k T k = s | s G k ran F
52 34 51 syl φ m w T m k w T k T k = s | s G k ran F
53 45 52 eleqtrd φ m w T m k w T k w s | s G k ran F
54 oveq1 s = w s G k = w G k
55 54 eleq1d s = w s G k ran F w G k ran F
56 55 elrab w s | s G k ran F w w G k ran F
57 53 56 sylib φ m w T m k w T k w w G k ran F
58 57 simprd φ m w T m k w T k w G k ran F
59 42 58 sseldd φ m w T m k w T k w G k 0 1
60 24 33 37 nnncan1d φ m w T m k w T k w - G m - w G k = G k G m
61 qsubcl G k G m G k G m
62 35 31 61 syl2anc φ m w T m k w T k G k G m
63 60 62 eqeltrd φ m w T m k w T k w - G m - w G k
64 oveq12 x = w G m y = w G k x y = w - G m - w G k
65 64 eleq1d x = w G m y = w G k x y w - G m - w G k
66 65 1 brab2a w G m ˙ w G k w G m 0 1 w G k 0 1 w - G m - w G k
67 44 59 63 66 syl21anbrc φ m w T m k w T k w G m ˙ w G k
68 39 67 erthi φ m w T m k w T k w G m ˙ = w G k ˙
69 68 fveq2d φ m w T m k w T k F w G m ˙ = F w G k ˙
70 eceq1 z = w G m z ˙ = w G m ˙
71 70 fveq2d z = w G m F z ˙ = F w G m ˙
72 id z = w G m z = w G m
73 71 72 eqeq12d z = w G m F z ˙ = z F w G m ˙ = w G m
74 fveq2 v ˙ = w F v ˙ = F w
75 74 eceq1d v ˙ = w F v ˙ ˙ = F w ˙
76 75 fveq2d v ˙ = w F F v ˙ ˙ = F F w ˙
77 76 74 eqeq12d v ˙ = w F F v ˙ ˙ = F v ˙ F F w ˙ = F w
78 38 a1i φ v 0 1 ˙ Er 0 1
79 simpr φ v 0 1 v 0 1
80 erdm ˙ Er 0 1 dom ˙ = 0 1
81 38 80 ax-mp dom ˙ = 0 1
82 81 eleq2i v dom ˙ v 0 1
83 ecdmn0 v dom ˙ v ˙
84 82 83 bitr3i v 0 1 v ˙
85 79 84 sylib φ v 0 1 v ˙
86 neeq1 z = v ˙ z v ˙
87 fveq2 z = v ˙ F z = F v ˙
88 id z = v ˙ z = v ˙
89 87 88 eleq12d z = v ˙ F z z F v ˙ v ˙
90 86 89 imbi12d z = v ˙ z F z z v ˙ F v ˙ v ˙
91 4 adantr φ v 0 1 z S z F z z
92 ovex 0 1 V
93 erex ˙ Er 0 1 0 1 V ˙ V
94 38 92 93 mp2 ˙ V
95 94 ecelqsi v 0 1 v ˙ 0 1 / ˙
96 95 2 eleqtrrdi v 0 1 v ˙ S
97 96 adantl φ v 0 1 v ˙ S
98 90 91 97 rspcdva φ v 0 1 v ˙ F v ˙ v ˙
99 85 98 mpd φ v 0 1 F v ˙ v ˙
100 fvex F v ˙ V
101 vex v V
102 100 101 elec F v ˙ v ˙ v ˙ F v ˙
103 99 102 sylib φ v 0 1 v ˙ F v ˙
104 78 103 erthi φ v 0 1 v ˙ = F v ˙ ˙
105 104 eqcomd φ v 0 1 F v ˙ ˙ = v ˙
106 105 fveq2d φ v 0 1 F F v ˙ ˙ = F v ˙
107 2 77 106 ectocld φ w S F F w ˙ = F w
108 107 ralrimiva φ w S F F w ˙ = F w
109 eceq1 z = F w z ˙ = F w ˙
110 109 fveq2d z = F w F z ˙ = F F w ˙
111 id z = F w z = F w
112 110 111 eqeq12d z = F w F z ˙ = z F F w ˙ = F w
113 112 ralrn F Fn S z ran F F z ˙ = z w S F F w ˙ = F w
114 3 113 syl φ z ran F F z ˙ = z w S F F w ˙ = F w
115 108 114 mpbird φ z ran F F z ˙ = z
116 115 adantr φ m w T m k w T k z ran F F z ˙ = z
117 73 116 43 rspcdva φ m w T m k w T k F w G m ˙ = w G m
118 eceq1 z = w G k z ˙ = w G k ˙
119 118 fveq2d z = w G k F z ˙ = F w G k ˙
120 id z = w G k z = w G k
121 119 120 eqeq12d z = w G k F z ˙ = z F w G k ˙ = w G k
122 121 116 58 rspcdva φ m w T m k w T k F w G k ˙ = w G k
123 69 117 122 3eqtr3d φ m w T m k w T k w G m = w G k
124 24 33 37 123 subcand φ m w T m k w T k G m = G k
125 5 adantr φ m w T m k w T k G : 1-1 onto 1 1
126 f1of1 G : 1-1 onto 1 1 G : 1-1 1 1
127 125 126 syl φ m w T m k w T k G : 1-1 1 1
128 f1fveq G : 1-1 1 1 m k G m = G k m = k
129 127 9 34 128 syl12anc φ m w T m k w T k G m = G k m = k
130 124 129 mpbid φ m w T m k w T k m = k
131 130 ex φ m w T m k w T k m = k
132 131 alrimivv φ m k m w T m k w T k m = k
133 eleq1w m = k m k
134 fveq2 m = k T m = T k
135 134 eleq2d m = k w T m w T k
136 133 135 anbi12d m = k m w T m k w T k
137 136 mo4 * m m w T m m k m w T m k w T k m = k
138 132 137 sylibr φ * m m w T m
139 138 alrimiv φ w * m m w T m
140 dfdisj2 Disj m T m w * m m w T m
141 139 140 sylibr φ Disj m T m