| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vitali.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } |
| 2 |
|
vitali.2 |
⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) |
| 3 |
|
vitali.3 |
⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) |
| 4 |
|
vitali.4 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 5 |
|
vitali.5 |
⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 6 |
|
vitali.6 |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) |
| 7 |
|
vitali.7 |
⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 8 |
|
neeq1 |
⊢ ( [ 𝑣 ] ∼ = 𝑧 → ( [ 𝑣 ] ∼ ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) |
| 9 |
1
|
vitalilem1 |
⊢ ∼ Er ( 0 [,] 1 ) |
| 10 |
|
erdm |
⊢ ( ∼ Er ( 0 [,] 1 ) → dom ∼ = ( 0 [,] 1 ) ) |
| 11 |
9 10
|
ax-mp |
⊢ dom ∼ = ( 0 [,] 1 ) |
| 12 |
11
|
eleq2i |
⊢ ( 𝑣 ∈ dom ∼ ↔ 𝑣 ∈ ( 0 [,] 1 ) ) |
| 13 |
|
ecdmn0 |
⊢ ( 𝑣 ∈ dom ∼ ↔ [ 𝑣 ] ∼ ≠ ∅ ) |
| 14 |
12 13
|
bitr3i |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) ↔ [ 𝑣 ] ∼ ≠ ∅ ) |
| 15 |
14
|
biimpi |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ≠ ∅ ) |
| 16 |
2 8 15
|
ectocl |
⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ≠ ∅ ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ≠ ∅ ) |
| 18 |
|
sseq1 |
⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ ( 0 [,] 1 ) ↔ 𝑧 ⊆ ( 0 [,] 1 ) ) ) |
| 19 |
9
|
a1i |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ∼ Er ( 0 [,] 1 ) ) |
| 20 |
19
|
ecss |
⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → [ 𝑤 ] ∼ ⊆ ( 0 [,] 1 ) ) |
| 21 |
2 18 20
|
ectocl |
⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 23 |
22
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 24 |
17 23
|
embantd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 25 |
24
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 26 |
4 25
|
mpd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 27 |
|
ffnfv |
⊢ ( 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 28 |
3 26 27
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ) |
| 29 |
28
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 30 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 31 |
|
f1ocnv |
⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) –1-1-onto→ ℕ ) |
| 32 |
|
f1of |
⊢ ( ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) –1-1-onto→ ℕ → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) ⟶ ℕ ) |
| 33 |
30 31 32
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) ⟶ ℕ ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 0 [,] 1 ) ) |
| 35 |
34 14
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ≠ ∅ ) |
| 36 |
|
neeq1 |
⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝑧 ≠ ∅ ↔ [ 𝑣 ] ∼ ≠ ∅ ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 38 |
|
id |
⊢ ( 𝑧 = [ 𝑣 ] ∼ → 𝑧 = [ 𝑣 ] ∼ ) |
| 39 |
37 38
|
eleq12d |
⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 40 |
36 39
|
imbi12d |
⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) ) |
| 41 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 42 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 43 |
|
erex |
⊢ ( ∼ Er ( 0 [,] 1 ) → ( ( 0 [,] 1 ) ∈ V → ∼ ∈ V ) ) |
| 44 |
9 42 43
|
mp2 |
⊢ ∼ ∈ V |
| 45 |
44
|
ecelqsi |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 47 |
46 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ∈ 𝑆 ) |
| 48 |
40 41 47
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 49 |
35 48
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) |
| 50 |
|
fvex |
⊢ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ V |
| 51 |
|
vex |
⊢ 𝑣 ∈ V |
| 52 |
50 51
|
elec |
⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 53 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 54 |
53
|
eleq1d |
⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 55 |
54 1
|
brab2a |
⊢ ( 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 56 |
52 55
|
bitri |
⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 57 |
49 56
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 58 |
57
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) |
| 59 |
|
elicc01 |
⊢ ( 𝑣 ∈ ( 0 [,] 1 ) ↔ ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1 ) ) |
| 60 |
34 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1 ) ) |
| 61 |
60
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ℝ ) |
| 62 |
57
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ) |
| 63 |
62
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) |
| 64 |
|
elicc01 |
⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) ) |
| 65 |
63 64
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) ) |
| 66 |
65
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ) |
| 67 |
61 66
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℝ ) |
| 68 |
66 61
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ∈ ℝ ) |
| 69 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℝ ) |
| 70 |
60
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑣 ) |
| 71 |
66 61
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 0 ≤ 𝑣 ↔ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 72 |
70 71
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 73 |
65
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) |
| 74 |
68 66 69 72 73
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ 1 ) |
| 75 |
68 69
|
lenegd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ 1 ↔ - 1 ≤ - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ) ) |
| 76 |
74 75
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - 1 ≤ - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ) |
| 77 |
66
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℂ ) |
| 78 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ℂ ) |
| 79 |
77 78
|
negsubdi2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 80 |
76 79
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - 1 ≤ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 81 |
65
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 82 |
61 66
|
subge02d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ↔ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 𝑣 ) ) |
| 83 |
81 82
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 𝑣 ) |
| 84 |
60
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ≤ 1 ) |
| 85 |
67 61 69 83 84
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 1 ) |
| 86 |
|
neg1rr |
⊢ - 1 ∈ ℝ |
| 87 |
|
1re |
⊢ 1 ∈ ℝ |
| 88 |
86 87
|
elicc2i |
⊢ ( ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( - 1 [,] 1 ) ↔ ( ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℝ ∧ - 1 ≤ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 1 ) ) |
| 89 |
67 80 85 88
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( - 1 [,] 1 ) ) |
| 90 |
58 89
|
elind |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 91 |
33 90
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ ) |
| 92 |
|
oveq1 |
⊢ ( 𝑠 = 𝑣 → ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ) |
| 93 |
92
|
eleq1d |
⊢ ( 𝑠 = 𝑣 → ( ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ↔ ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) ) |
| 94 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 95 |
5 90 94
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 96 |
95
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝑣 − ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) |
| 97 |
78 77
|
nncand |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 98 |
96 97
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 99 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑆 ∧ [ 𝑣 ] ∼ ∈ 𝑆 ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ran 𝐹 ) |
| 100 |
3 47 99
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ran 𝐹 ) |
| 101 |
98 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) |
| 102 |
93 61 101
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 103 |
|
fveq2 |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) |
| 104 |
103
|
oveq2d |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ) |
| 105 |
104
|
eleq1d |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) ) |
| 106 |
105
|
rabbidv |
⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 107 |
|
reex |
⊢ ℝ ∈ V |
| 108 |
107
|
rabex |
⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ∈ V |
| 109 |
106 6 108
|
fvmpt |
⊢ ( ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ → ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 110 |
91 109
|
syl |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 111 |
102 110
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) |
| 112 |
|
fveq2 |
⊢ ( 𝑚 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) |
| 113 |
112
|
eliuni |
⊢ ( ( ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ ∧ 𝑣 ∈ ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 114 |
91 111 113
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 115 |
114
|
ex |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 116 |
115
|
ssrdv |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 117 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) |
| 118 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 120 |
119
|
eleq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 121 |
120
|
rabbidv |
⊢ ( 𝑛 = 𝑚 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 122 |
107
|
rabex |
⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ∈ V |
| 123 |
121 6 122
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 125 |
124
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ↔ 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 126 |
125
|
biimpa |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 127 |
|
oveq1 |
⊢ ( 𝑠 = 𝑥 → ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) = ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 128 |
127
|
eleq1d |
⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ↔ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 129 |
128
|
elrab |
⊢ ( 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 130 |
126 129
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 131 |
130
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ ℝ ) |
| 132 |
86
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ∈ ℝ ) |
| 133 |
|
iccssre |
⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) |
| 134 |
86 87 133
|
mp2an |
⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 135 |
|
f1of |
⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 136 |
5 135
|
syl |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 137 |
136
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 138 |
137
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 139 |
134 138
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 140 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 141 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 142 |
86 87
|
elicc2i |
⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ↔ ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ ∧ - 1 ≤ ( 𝐺 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑚 ) ≤ 1 ) ) |
| 143 |
141 142
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ ∧ - 1 ≤ ( 𝐺 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑚 ) ≤ 1 ) ) |
| 144 |
143
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ≤ ( 𝐺 ‘ 𝑚 ) ) |
| 145 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 146 |
130
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) |
| 147 |
145 146
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ) |
| 148 |
|
elicc01 |
⊢ ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) ) |
| 149 |
147 148
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) ) |
| 150 |
149
|
simp2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 151 |
131 140
|
subge0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 152 |
150 151
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ≤ 𝑥 ) |
| 153 |
132 140 131 144 152
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ≤ 𝑥 ) |
| 154 |
|
peano2re |
⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 155 |
140 154
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 156 |
|
2re |
⊢ 2 ∈ ℝ |
| 157 |
156
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 2 ∈ ℝ ) |
| 158 |
149
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) |
| 159 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 1 ∈ ℝ ) |
| 160 |
131 140 159
|
lesubadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ↔ 𝑥 ≤ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ) |
| 161 |
158 160
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ≤ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) |
| 162 |
143
|
simp3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ≤ 1 ) |
| 163 |
140 159 159 162
|
leadd1dd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ ( 1 + 1 ) ) |
| 164 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 165 |
163 164
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 2 ) |
| 166 |
131 155 157 161 165
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ≤ 2 ) |
| 167 |
86 156
|
elicc2i |
⊢ ( 𝑥 ∈ ( - 1 [,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ - 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ) ) |
| 168 |
131 153 166 167
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ ( - 1 [,] 2 ) ) |
| 169 |
168
|
rexlimdva2 |
⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) → 𝑥 ∈ ( - 1 [,] 2 ) ) ) |
| 170 |
117 169
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) → 𝑥 ∈ ( - 1 [,] 2 ) ) ) |
| 171 |
170
|
ssrdv |
⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 172 |
29 116 171
|
3jca |
⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |