Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | vitali.1 | |
|
Assertion | vitalilem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vitali.1 | |
|
2 | 1 | relopabiv | |
3 | simplr | |
|
4 | simpll | |
|
5 | unitssre | |
|
6 | 5 | sseli | |
7 | 6 | recnd | |
8 | 7 | ad2antrr | |
9 | 5 | sseli | |
10 | 9 | recnd | |
11 | 10 | ad2antlr | |
12 | 8 11 | negsubdi2d | |
13 | qnegcl | |
|
14 | 13 | adantl | |
15 | 12 14 | eqeltrrd | |
16 | 3 4 15 | jca31 | |
17 | oveq12 | |
|
18 | 17 | eleq1d | |
19 | 18 1 | brab2a | |
20 | oveq12 | |
|
21 | 20 | eleq1d | |
22 | 21 1 | brab2a | |
23 | 16 19 22 | 3imtr4i | |
24 | simpl | |
|
25 | 24 19 | sylib | |
26 | 25 | simpld | |
27 | 26 | simpld | |
28 | simpr | |
|
29 | oveq12 | |
|
30 | 29 | eleq1d | |
31 | 30 1 | brab2a | |
32 | 28 31 | sylib | |
33 | 32 | simpld | |
34 | 33 | simprd | |
35 | 27 7 | syl | |
36 | 25 11 | syl | |
37 | 5 34 | sselid | |
38 | 37 | recnd | |
39 | 35 36 38 | npncand | |
40 | 25 | simprd | |
41 | 32 | simprd | |
42 | qaddcl | |
|
43 | 40 41 42 | syl2anc | |
44 | 39 43 | eqeltrrd | |
45 | oveq12 | |
|
46 | 45 | eleq1d | |
47 | 46 1 | brab2a | |
48 | 27 34 44 47 | syl21anbrc | |
49 | 7 | subidd | |
50 | 0z | |
|
51 | zq | |
|
52 | 50 51 | ax-mp | |
53 | 49 52 | eqeltrdi | |
54 | 53 | adantr | |
55 | 54 | pm4.71i | |
56 | pm4.24 | |
|
57 | oveq12 | |
|
58 | 57 | eleq1d | |
59 | 58 1 | brab2a | |
60 | 55 56 59 | 3bitr4i | |
61 | 2 23 48 60 | iseri | |