Metamath Proof Explorer


Theorem volico2

Description: The measure of left-closed right-open interval. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volico2 ABvolAB=ifABBA0

Proof

Step Hyp Ref Expression
1 iftrue A<BifA<BBA0=BA
2 1 adantl ABA<BifA<BBA0=BA
3 volico ABvolAB=ifA<BBA0
4 3 adantr ABA<BvolAB=ifA<BBA0
5 simpll ABA<BA
6 simplr ABA<BB
7 simpr ABA<BA<B
8 5 6 7 ltled ABA<BAB
9 8 iftrued ABA<BifABBA0=BA
10 2 4 9 3eqtr4d ABA<BvolAB=ifABBA0
11 10 adantlr ABABA<BvolAB=ifABBA0
12 simpll ABAB¬A<BAB
13 12 simpld ABAB¬A<BA
14 12 simprd ABAB¬A<BB
15 simplr ABAB¬A<BAB
16 simpr ABAB¬A<B¬A<B
17 13 14 15 16 lenlteq ABAB¬A<BA=B
18 simplr ABA=BB
19 simpr ABA=BA=B
20 19 eqcomd ABA=BB=A
21 18 20 eqled ABA=BBA
22 simpll ABA=BA
23 18 22 lenltd ABA=BBA¬A<B
24 21 23 mpbid ABA=B¬A<B
25 24 iffalsed ABA=BifA<BBA0=0
26 recn AA
27 26 subidd AAA=0
28 27 eqcomd A0=AA
29 28 ad2antrr ABA=B0=AA
30 oveq1 A=BAA=BA
31 30 adantl ABA=BAA=BA
32 25 29 31 3eqtrd ABA=BifA<BBA0=BA
33 3 adantr ABA=BvolAB=ifA<BBA0
34 22 19 eqled ABA=BAB
35 34 iftrued ABA=BifABBA0=BA
36 32 33 35 3eqtr4d ABA=BvolAB=ifABBA0
37 12 17 36 syl2anc ABAB¬A<BvolAB=ifABBA0
38 11 37 pm2.61dan ABABvolAB=ifABBA0
39 8 stoic1a AB¬AB¬A<B
40 39 iffalsed AB¬ABifA<BBA0=0
41 3 adantr AB¬ABvolAB=ifA<BBA0
42 iffalse ¬ABifABBA0=0
43 42 adantl AB¬ABifABBA0=0
44 40 41 43 3eqtr4d AB¬ABvolAB=ifABBA0
45 38 44 pm2.61dan ABvolAB=ifABBA0