Description: A nonempty subclass of an R -well-ordered and R -setlike class has a unique R -minimal element. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 24-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | wereu2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | rabeq0 | |
|
3 | breq1 | |
|
4 | 3 | notbid | |
5 | 4 | cbvralvw | |
6 | breq2 | |
|
7 | 6 | notbid | |
8 | 7 | ralbidv | |
9 | 5 8 | bitrid | |
10 | 9 | rspcev | |
11 | 10 | ex | |
12 | 11 | ad2antll | |
13 | 2 12 | biimtrid | |
14 | simprl | |
|
15 | simplr | |
|
16 | sess2 | |
|
17 | 14 15 16 | sylc | |
18 | simprr | |
|
19 | seex | |
|
20 | 17 18 19 | syl2anc | |
21 | wefr | |
|
22 | 21 | ad2antrr | |
23 | ssrab2 | |
|
24 | 23 14 | sstrid | |
25 | fri | |
|
26 | 25 | expr | |
27 | 20 22 24 26 | syl21anc | |
28 | breq1 | |
|
29 | 28 | rexrab | |
30 | breq1 | |
|
31 | 30 | ralrab | |
32 | weso | |
|
33 | 32 | ad2antrr | |
34 | soss | |
|
35 | 14 33 34 | sylc | |
36 | 35 | ad2antrr | |
37 | simpr | |
|
38 | simplr | |
|
39 | 18 | ad2antrr | |
40 | sotr | |
|
41 | 36 37 38 39 40 | syl13anc | |
42 | 41 | ancomsd | |
43 | 42 | expdimp | |
44 | 43 | an32s | |
45 | 44 | con3d | |
46 | idd | |
|
47 | 45 46 | jad | |
48 | 47 | ralimdva | |
49 | 31 48 | biimtrid | |
50 | 49 | expimpd | |
51 | 50 | reximdva | |
52 | 29 51 | biimtrid | |
53 | 27 52 | syld | |
54 | 13 53 | pm2.61dne | |
55 | 54 | expr | |
56 | 55 | exlimdv | |
57 | 1 56 | biimtrid | |
58 | 57 | impr | |
59 | simprl | |
|
60 | 32 | ad2antrr | |
61 | 59 60 34 | sylc | |
62 | somo | |
|
63 | 61 62 | syl | |
64 | reu5 | |
|
65 | 58 63 64 | sylanbrc | |