Metamath Proof Explorer


Theorem wereu2

Description: A nonempty subclass of an R -well-ordered and R -setlike class has a unique R -minimal element. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion wereu2 RWeARSeABAB∃!xByB¬yRx

Proof

Step Hyp Ref Expression
1 n0 BzzB
2 rabeq0 wB|wRz=wB¬wRz
3 breq1 y=wyRxwRx
4 3 notbid y=w¬yRx¬wRx
5 4 cbvralvw yB¬yRxwB¬wRx
6 breq2 x=zwRxwRz
7 6 notbid x=z¬wRx¬wRz
8 7 ralbidv x=zwB¬wRxwB¬wRz
9 5 8 bitrid x=zyB¬yRxwB¬wRz
10 9 rspcev zBwB¬wRzxByB¬yRx
11 10 ex zBwB¬wRzxByB¬yRx
12 11 ad2antll RWeARSeABAzBwB¬wRzxByB¬yRx
13 2 12 biimtrid RWeARSeABAzBwB|wRz=xByB¬yRx
14 simprl RWeARSeABAzBBA
15 simplr RWeARSeABAzBRSeA
16 sess2 BARSeARSeB
17 14 15 16 sylc RWeARSeABAzBRSeB
18 simprr RWeARSeABAzBzB
19 seex RSeBzBwB|wRzV
20 17 18 19 syl2anc RWeARSeABAzBwB|wRzV
21 wefr RWeARFrA
22 21 ad2antrr RWeARSeABAzBRFrA
23 ssrab2 wB|wRzB
24 23 14 sstrid RWeARSeABAzBwB|wRzA
25 fri wB|wRzVRFrAwB|wRzAwB|wRzxwB|wRzywB|wRz¬yRx
26 25 expr wB|wRzVRFrAwB|wRzAwB|wRzxwB|wRzywB|wRz¬yRx
27 20 22 24 26 syl21anc RWeARSeABAzBwB|wRzxwB|wRzywB|wRz¬yRx
28 breq1 w=xwRzxRz
29 28 rexrab xwB|wRzywB|wRz¬yRxxBxRzywB|wRz¬yRx
30 breq1 w=ywRzyRz
31 30 ralrab ywB|wRz¬yRxyByRz¬yRx
32 weso RWeAROrA
33 32 ad2antrr RWeARSeABAzBROrA
34 soss BAROrAROrB
35 14 33 34 sylc RWeARSeABAzBROrB
36 35 ad2antrr RWeARSeABAzBxByBROrB
37 simpr RWeARSeABAzBxByByB
38 simplr RWeARSeABAzBxByBxB
39 18 ad2antrr RWeARSeABAzBxByBzB
40 sotr ROrByBxBzByRxxRzyRz
41 36 37 38 39 40 syl13anc RWeARSeABAzBxByByRxxRzyRz
42 41 ancomsd RWeARSeABAzBxByBxRzyRxyRz
43 42 expdimp RWeARSeABAzBxByBxRzyRxyRz
44 43 an32s RWeARSeABAzBxBxRzyByRxyRz
45 44 con3d RWeARSeABAzBxBxRzyB¬yRz¬yRx
46 idd RWeARSeABAzBxBxRzyB¬yRx¬yRx
47 45 46 jad RWeARSeABAzBxBxRzyByRz¬yRx¬yRx
48 47 ralimdva RWeARSeABAzBxBxRzyByRz¬yRxyB¬yRx
49 31 48 biimtrid RWeARSeABAzBxBxRzywB|wRz¬yRxyB¬yRx
50 49 expimpd RWeARSeABAzBxBxRzywB|wRz¬yRxyB¬yRx
51 50 reximdva RWeARSeABAzBxBxRzywB|wRz¬yRxxByB¬yRx
52 29 51 biimtrid RWeARSeABAzBxwB|wRzywB|wRz¬yRxxByB¬yRx
53 27 52 syld RWeARSeABAzBwB|wRzxByB¬yRx
54 13 53 pm2.61dne RWeARSeABAzBxByB¬yRx
55 54 expr RWeARSeABAzBxByB¬yRx
56 55 exlimdv RWeARSeABAzzBxByB¬yRx
57 1 56 biimtrid RWeARSeABABxByB¬yRx
58 57 impr RWeARSeABABxByB¬yRx
59 simprl RWeARSeABABBA
60 32 ad2antrr RWeARSeABABROrA
61 59 60 34 sylc RWeARSeABABROrB
62 somo ROrB*xByB¬yRx
63 61 62 syl RWeARSeABAB*xByB¬yRx
64 reu5 ∃!xByB¬yRxxByB¬yRx*xByB¬yRx
65 58 63 64 sylanbrc RWeARSeABAB∃!xByB¬yRx