Description: There is exactly one walk of length 0 on each vertex X . (Contributed by AV, 4-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlknon2num.v | |
|
Assertion | wlkl0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlknon2num.v | |
|
2 | clwlkwlk | |
|
3 | wlkop | |
|
4 | 2 3 | syl | |
5 | fvex | |
|
6 | hasheq0 | |
|
7 | 5 6 | ax-mp | |
8 | 7 | biimpi | |
9 | 8 | adantr | |
10 | 9 | 3ad2ant3 | |
11 | 9 | adantl | |
12 | 11 | breq1d | |
13 | 1 | 1vgrex | |
14 | 1 | 0clwlk | |
15 | 13 14 | syl | |
16 | 15 | adantr | |
17 | 12 16 | bitrd | |
18 | fz0sn | |
|
19 | 18 | feq2i | |
20 | c0ex | |
|
21 | 20 | fsn2 | |
22 | simprr | |
|
23 | simprr | |
|
24 | 23 | adantr | |
25 | 24 | opeq2d | |
26 | 25 | sneqd | |
27 | 22 26 | eqtrd | |
28 | 27 | ex | |
29 | 21 28 | biimtrid | |
30 | 19 29 | biimtrid | |
31 | 17 30 | sylbid | |
32 | 31 | ex | |
33 | 32 | com23 | |
34 | 33 | 3imp | |
35 | 10 34 | opeq12d | |
36 | 35 | 3exp | |
37 | eleq1 | |
|
38 | df-br | |
|
39 | 37 38 | bitr4di | |
40 | eqeq1 | |
|
41 | 40 | imbi2d | |
42 | 39 41 | imbi12d | |
43 | 36 42 | imbitrrid | |
44 | 43 | com23 | |
45 | 4 44 | mpcom | |
46 | 45 | com12 | |
47 | 46 | impd | |
48 | eqidd | |
|
49 | 20 | a1i | |
50 | snidg | |
|
51 | 49 50 | fsnd | |
52 | 1 | 0clwlkv | |
53 | 48 51 52 | mpd3an23 | |
54 | hash0 | |
|
55 | 54 | a1i | |
56 | fvsng | |
|
57 | 20 56 | mpan | |
58 | 53 55 57 | jca32 | |
59 | eleq1 | |
|
60 | df-br | |
|
61 | 59 60 | bitr4di | |
62 | 0ex | |
|
63 | snex | |
|
64 | 62 63 | op1std | |
65 | 64 | fveqeq2d | |
66 | 62 63 | op2ndd | |
67 | 66 | fveq1d | |
68 | 67 | eqeq1d | |
69 | 65 68 | anbi12d | |
70 | 61 69 | anbi12d | |
71 | 58 70 | syl5ibrcom | |
72 | 47 71 | impbid | |
73 | 72 | alrimiv | |
74 | rabeqsn | |
|
75 | 73 74 | sylibr | |