Metamath Proof Explorer


Theorem wlkl0

Description: There is exactly one walk of length 0 on each vertex X . (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypothesis clwlknon2num.v V=VtxG
Assertion wlkl0 XVwClWalksG|1stw=02ndw0=X=0X

Proof

Step Hyp Ref Expression
1 clwlknon2num.v V=VtxG
2 clwlkwlk wClWalksGwWalksG
3 wlkop wWalksGw=1stw2ndw
4 2 3 syl wClWalksGw=1stw2ndw
5 fvex 1stwV
6 hasheq0 1stwV1stw=01stw=
7 5 6 ax-mp 1stw=01stw=
8 7 biimpi 1stw=01stw=
9 8 adantr 1stw=02ndw0=X1stw=
10 9 3ad2ant3 XV1stwClWalksG2ndw1stw=02ndw0=X1stw=
11 9 adantl XV1stw=02ndw0=X1stw=
12 11 breq1d XV1stw=02ndw0=X1stwClWalksG2ndwClWalksG2ndw
13 1 1vgrex XVGV
14 1 0clwlk GVClWalksG2ndw2ndw:00V
15 13 14 syl XVClWalksG2ndw2ndw:00V
16 15 adantr XV1stw=02ndw0=XClWalksG2ndw2ndw:00V
17 12 16 bitrd XV1stw=02ndw0=X1stwClWalksG2ndw2ndw:00V
18 fz0sn 00=0
19 18 feq2i 2ndw:00V2ndw:0V
20 c0ex 0V
21 20 fsn2 2ndw:0V2ndw0V2ndw=02ndw0
22 simprr XV1stw=02ndw0=X2ndw0V2ndw=02ndw02ndw=02ndw0
23 simprr XV1stw=02ndw0=X2ndw0=X
24 23 adantr XV1stw=02ndw0=X2ndw0V2ndw=02ndw02ndw0=X
25 24 opeq2d XV1stw=02ndw0=X2ndw0V2ndw=02ndw002ndw0=0X
26 25 sneqd XV1stw=02ndw0=X2ndw0V2ndw=02ndw002ndw0=0X
27 22 26 eqtrd XV1stw=02ndw0=X2ndw0V2ndw=02ndw02ndw=0X
28 27 ex XV1stw=02ndw0=X2ndw0V2ndw=02ndw02ndw=0X
29 21 28 biimtrid XV1stw=02ndw0=X2ndw:0V2ndw=0X
30 19 29 biimtrid XV1stw=02ndw0=X2ndw:00V2ndw=0X
31 17 30 sylbid XV1stw=02ndw0=X1stwClWalksG2ndw2ndw=0X
32 31 ex XV1stw=02ndw0=X1stwClWalksG2ndw2ndw=0X
33 32 com23 XV1stwClWalksG2ndw1stw=02ndw0=X2ndw=0X
34 33 3imp XV1stwClWalksG2ndw1stw=02ndw0=X2ndw=0X
35 10 34 opeq12d XV1stwClWalksG2ndw1stw=02ndw0=X1stw2ndw=0X
36 35 3exp XV1stwClWalksG2ndw1stw=02ndw0=X1stw2ndw=0X
37 eleq1 w=1stw2ndwwClWalksG1stw2ndwClWalksG
38 df-br 1stwClWalksG2ndw1stw2ndwClWalksG
39 37 38 bitr4di w=1stw2ndwwClWalksG1stwClWalksG2ndw
40 eqeq1 w=1stw2ndww=0X1stw2ndw=0X
41 40 imbi2d w=1stw2ndw1stw=02ndw0=Xw=0X1stw=02ndw0=X1stw2ndw=0X
42 39 41 imbi12d w=1stw2ndwwClWalksG1stw=02ndw0=Xw=0X1stwClWalksG2ndw1stw=02ndw0=X1stw2ndw=0X
43 36 42 imbitrrid w=1stw2ndwXVwClWalksG1stw=02ndw0=Xw=0X
44 43 com23 w=1stw2ndwwClWalksGXV1stw=02ndw0=Xw=0X
45 4 44 mpcom wClWalksGXV1stw=02ndw0=Xw=0X
46 45 com12 XVwClWalksG1stw=02ndw0=Xw=0X
47 46 impd XVwClWalksG1stw=02ndw0=Xw=0X
48 eqidd XV=
49 20 a1i XV0V
50 snidg XVXX
51 49 50 fsnd XV0X:0X
52 1 0clwlkv XV=0X:0XClWalksG0X
53 48 51 52 mpd3an23 XVClWalksG0X
54 hash0 =0
55 54 a1i XV=0
56 fvsng 0VXV0X0=X
57 20 56 mpan XV0X0=X
58 53 55 57 jca32 XVClWalksG0X=00X0=X
59 eleq1 w=0XwClWalksG0XClWalksG
60 df-br ClWalksG0X0XClWalksG
61 59 60 bitr4di w=0XwClWalksGClWalksG0X
62 0ex V
63 snex 0XV
64 62 63 op1std w=0X1stw=
65 64 fveqeq2d w=0X1stw=0=0
66 62 63 op2ndd w=0X2ndw=0X
67 66 fveq1d w=0X2ndw0=0X0
68 67 eqeq1d w=0X2ndw0=X0X0=X
69 65 68 anbi12d w=0X1stw=02ndw0=X=00X0=X
70 61 69 anbi12d w=0XwClWalksG1stw=02ndw0=XClWalksG0X=00X0=X
71 58 70 syl5ibrcom XVw=0XwClWalksG1stw=02ndw0=X
72 47 71 impbid XVwClWalksG1stw=02ndw0=Xw=0X
73 72 alrimiv XVwwClWalksG1stw=02ndw0=Xw=0X
74 rabeqsn wClWalksG|1stw=02ndw0=X=0XwwClWalksG1stw=02ndw0=Xw=0X
75 73 74 sylibr XVwClWalksG|1stw=02ndw0=X=0X