Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018) (Revised by AV, 16-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | wspthsnonn0vne | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | eqid | |
|
3 | 2 | wspthnonp | |
4 | wwlknon | |
|
5 | iswwlksn | |
|
6 | spthonisspth | |
|
7 | spthispth | |
|
8 | pthiswlk | |
|
9 | wlklenvm1 | |
|
10 | 8 9 | syl | |
11 | 6 7 10 | 3syl | |
12 | oveq1 | |
|
13 | 12 | eqeq2d | |
14 | simpr | |
|
15 | nncn | |
|
16 | pncan1 | |
|
17 | 15 16 | syl | |
18 | 17 | adantr | |
19 | 14 18 | eqtrd | |
20 | nnne0 | |
|
21 | 20 | adantr | |
22 | 19 21 | eqnetrd | |
23 | spthonepeq | |
|
24 | 23 | necon3bid | |
25 | 22 24 | syl5ibrcom | |
26 | 25 | expcom | |
27 | 26 | com23 | |
28 | 13 27 | syl6bi | |
29 | 28 | com13 | |
30 | 11 29 | mpd | |
31 | 30 | exlimiv | |
32 | 31 | com12 | |
33 | 32 | adantl | |
34 | 5 33 | syl6bi | |
35 | 34 | adantr | |
36 | 35 | adantr | |
37 | 36 | com12 | |
38 | 37 | 3ad2ant1 | |
39 | 38 | com12 | |
40 | 4 39 | biimtrid | |
41 | 40 | impd | |
42 | 41 | 3impia | |
43 | 3 42 | syl | |
44 | 43 | exlimiv | |
45 | 1 44 | sylbi | |
46 | 45 | impcom | |