Metamath Proof Explorer


Theorem wspthsnonn0vne

Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018) (Revised by AV, 16-May-2021)

Ref Expression
Assertion wspthsnonn0vne NXNWSPathsNOnGYXY

Proof

Step Hyp Ref Expression
1 n0 XNWSPathsNOnGYppXNWSPathsNOnGY
2 eqid VtxG=VtxG
3 2 wspthnonp pXNWSPathsNOnGYN0GVXVtxGYVtxGpXNWWalksNOnGYffXSPathsOnGYp
4 wwlknon pXNWWalksNOnGYpNWWalksNGp0=XpN=Y
5 iswwlksn N0pNWWalksNGpWWalksGp=N+1
6 spthonisspth fXSPathsOnGYpfSPathsGp
7 spthispth fSPathsGpfPathsGp
8 pthiswlk fPathsGpfWalksGp
9 wlklenvm1 fWalksGpf=p1
10 8 9 syl fPathsGpf=p1
11 6 7 10 3syl fXSPathsOnGYpf=p1
12 oveq1 p=N+1p1=N+1-1
13 12 eqeq2d p=N+1f=p1f=N+1-1
14 simpr Nf=N+1-1f=N+1-1
15 nncn NN
16 pncan1 NN+1-1=N
17 15 16 syl NN+1-1=N
18 17 adantr Nf=N+1-1N+1-1=N
19 14 18 eqtrd Nf=N+1-1f=N
20 nnne0 NN0
21 20 adantr Nf=N+1-1N0
22 19 21 eqnetrd Nf=N+1-1f0
23 spthonepeq fXSPathsOnGYpX=Yf=0
24 23 necon3bid fXSPathsOnGYpXYf0
25 22 24 syl5ibrcom Nf=N+1-1fXSPathsOnGYpXY
26 25 expcom f=N+1-1NfXSPathsOnGYpXY
27 26 com23 f=N+1-1fXSPathsOnGYpNXY
28 13 27 syl6bi p=N+1f=p1fXSPathsOnGYpNXY
29 28 com13 fXSPathsOnGYpf=p1p=N+1NXY
30 11 29 mpd fXSPathsOnGYpp=N+1NXY
31 30 exlimiv ffXSPathsOnGYpp=N+1NXY
32 31 com12 p=N+1ffXSPathsOnGYpNXY
33 32 adantl pWWalksGp=N+1ffXSPathsOnGYpNXY
34 5 33 syl6bi N0pNWWalksNGffXSPathsOnGYpNXY
35 34 adantr N0GVpNWWalksNGffXSPathsOnGYpNXY
36 35 adantr N0GVXVtxGYVtxGpNWWalksNGffXSPathsOnGYpNXY
37 36 com12 pNWWalksNGN0GVXVtxGYVtxGffXSPathsOnGYpNXY
38 37 3ad2ant1 pNWWalksNGp0=XpN=YN0GVXVtxGYVtxGffXSPathsOnGYpNXY
39 38 com12 N0GVXVtxGYVtxGpNWWalksNGp0=XpN=YffXSPathsOnGYpNXY
40 4 39 biimtrid N0GVXVtxGYVtxGpXNWWalksNOnGYffXSPathsOnGYpNXY
41 40 impd N0GVXVtxGYVtxGpXNWWalksNOnGYffXSPathsOnGYpNXY
42 41 3impia N0GVXVtxGYVtxGpXNWWalksNOnGYffXSPathsOnGYpNXY
43 3 42 syl pXNWSPathsNOnGYNXY
44 43 exlimiv ppXNWSPathsNOnGYNXY
45 1 44 sylbi XNWSPathsNOnGYNXY
46 45 impcom NXNWSPathsNOnGYXY