| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|
| 2 |
|
eqid |
|
| 3 |
2
|
wspthnonp |
|
| 4 |
|
wwlknon |
|
| 5 |
|
iswwlksn |
|
| 6 |
|
spthonisspth |
|
| 7 |
|
spthispth |
|
| 8 |
|
pthiswlk |
|
| 9 |
|
wlklenvm1 |
|
| 10 |
6 7 8 9
|
4syl |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
eqeq2d |
|
| 13 |
|
simpr |
|
| 14 |
|
nncn |
|
| 15 |
|
pncan1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
13 17
|
eqtrd |
|
| 19 |
|
nnne0 |
|
| 20 |
19
|
adantr |
|
| 21 |
18 20
|
eqnetrd |
|
| 22 |
|
spthonepeq |
|
| 23 |
22
|
necon3bid |
|
| 24 |
21 23
|
syl5ibrcom |
|
| 25 |
24
|
expcom |
|
| 26 |
25
|
com23 |
|
| 27 |
12 26
|
biimtrdi |
|
| 28 |
27
|
com13 |
|
| 29 |
10 28
|
mpd |
|
| 30 |
29
|
exlimiv |
|
| 31 |
30
|
com12 |
|
| 32 |
31
|
adantl |
|
| 33 |
5 32
|
biimtrdi |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
adantr |
|
| 36 |
35
|
com12 |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37
|
com12 |
|
| 39 |
4 38
|
biimtrid |
|
| 40 |
39
|
impd |
|
| 41 |
40
|
3impia |
|
| 42 |
3 41
|
syl |
|
| 43 |
42
|
exlimiv |
|
| 44 |
1 43
|
sylbi |
|
| 45 |
44
|
impcom |
|