Metamath Proof Explorer


Theorem wsuclem

Description: Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018) (Revised by AV, 10-Oct-2021)

Ref Expression
Hypotheses wsuclem.1 φRWeA
wsuclem.2 φRSeA
wsuclem.3 φXV
wsuclem.4 φwAXRw
Assertion wsuclem φxAyPredR-1AX¬yRxyAxRyzPredR-1AXzRy

Proof

Step Hyp Ref Expression
1 wsuclem.1 φRWeA
2 wsuclem.2 φRSeA
3 wsuclem.3 φXV
4 wsuclem.4 φwAXRw
5 predss PredR-1AXA
6 5 a1i φPredR-1AXA
7 dfpred3g XVPredR-1AX=wA|wR-1X
8 3 7 syl φPredR-1AX=wA|wR-1X
9 3 elexd φXV
10 rabn0 wA|wR-1XwAwR-1X
11 brcnvg wAXVwR-1XXRw
12 11 ancoms XVwAwR-1XXRw
13 12 rexbidva XVwAwR-1XwAXRw
14 10 13 bitrid XVwA|wR-1XwAXRw
15 14 biimpar XVwAXRwwA|wR-1X
16 9 4 15 syl2anc φwA|wR-1X
17 8 16 eqnetrd φPredR-1AX
18 tz6.26 RWeARSeAPredR-1AXAPredR-1AXxPredR-1AXPredRPredR-1AXx=
19 1 2 6 17 18 syl22anc φxPredR-1AXPredRPredR-1AXx=
20 dfpred3g XVPredR-1AX=yA|yR-1X
21 3 20 syl φPredR-1AX=yA|yR-1X
22 21 rexeqdv φxPredR-1AXPredRPredR-1AXx=xyA|yR-1XPredRPredR-1AXx=
23 breq1 y=xyR-1XxR-1X
24 23 rexrab xyA|yR-1XPredRPredR-1AXx=xAxR-1XPredRPredR-1AXx=
25 noel ¬y
26 simp2r φxAPredRPredR-1AXx=yPredR-1AXPredRPredR-1AXx=
27 26 eleq2d φxAPredRPredR-1AXx=yPredR-1AXyPredRPredR-1AXxy
28 25 27 mtbiri φxAPredRPredR-1AXx=yPredR-1AX¬yPredRPredR-1AXx
29 vex xV
30 29 a1i φxAPredRPredR-1AXx=yPredR-1AXxV
31 simp3 φxAPredRPredR-1AXx=yPredR-1AXyPredR-1AX
32 elpredg xVyPredR-1AXyPredRPredR-1AXxyRx
33 30 31 32 syl2anc φxAPredRPredR-1AXx=yPredR-1AXyPredRPredR-1AXxyRx
34 28 33 mtbid φxAPredRPredR-1AXx=yPredR-1AX¬yRx
35 34 3expa φxAPredRPredR-1AXx=yPredR-1AX¬yRx
36 35 ralrimiva φxAPredRPredR-1AXx=yPredR-1AX¬yRx
37 36 expr φxAPredRPredR-1AXx=yPredR-1AX¬yRx
38 simp1rl φxAxR-1XyAxRyxA
39 simp1rr φxAxR-1XyAxRyxR-1X
40 3 adantr φxAxR-1XXV
41 40 3ad2ant1 φxAxR-1XyAxRyXV
42 29 elpred XVxPredR-1AXxAxR-1X
43 41 42 syl φxAxR-1XyAxRyxPredR-1AXxAxR-1X
44 38 39 43 mpbir2and φxAxR-1XyAxRyxPredR-1AX
45 simp3 φxAxR-1XyAxRyxRy
46 breq1 z=xzRyxRy
47 46 rspcev xPredR-1AXxRyzPredR-1AXzRy
48 44 45 47 syl2anc φxAxR-1XyAxRyzPredR-1AXzRy
49 48 3expia φxAxR-1XyAxRyzPredR-1AXzRy
50 49 ralrimiva φxAxR-1XyAxRyzPredR-1AXzRy
51 50 expr φxAxR-1XyAxRyzPredR-1AXzRy
52 37 51 anim12d φxAPredRPredR-1AXx=xR-1XyPredR-1AX¬yRxyAxRyzPredR-1AXzRy
53 52 ancomsd φxAxR-1XPredRPredR-1AXx=yPredR-1AX¬yRxyAxRyzPredR-1AXzRy
54 53 reximdva φxAxR-1XPredRPredR-1AXx=xAyPredR-1AX¬yRxyAxRyzPredR-1AXzRy
55 24 54 biimtrid φxyA|yR-1XPredRPredR-1AXx=xAyPredR-1AX¬yRxyAxRyzPredR-1AXzRy
56 22 55 sylbid φxPredR-1AXPredRPredR-1AXx=xAyPredR-1AX¬yRxyAxRyzPredR-1AXzRy
57 19 56 mpd φxAyPredR-1AX¬yRxyAxRyzPredR-1AXzRy