Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|
2 |
|
9nn |
|
3 |
2
|
nnzi |
|
4 |
|
2re |
|
5 |
|
9re |
|
6 |
|
2lt9 |
|
7 |
4 5 6
|
ltleii |
|
8 |
|
eluz2 |
|
9 |
1 3 7 8
|
mpbir3an |
|
10 |
|
fzouzsplit |
|
11 |
10
|
eleq2d |
|
12 |
9 11
|
ax-mp |
|
13 |
|
elun |
|
14 |
12 13
|
bitri |
|
15 |
|
elfzo2 |
|
16 |
|
simp1 |
|
17 |
|
df-9 |
|
18 |
17
|
breq2i |
|
19 |
|
eluz2nn |
|
20 |
|
8nn |
|
21 |
19 20
|
jctir |
|
22 |
21
|
adantr |
|
23 |
|
nnleltp1 |
|
24 |
22 23
|
syl |
|
25 |
24
|
biimprd |
|
26 |
18 25
|
syl5bi |
|
27 |
26
|
3impia |
|
28 |
16 27
|
jca |
|
29 |
15 28
|
sylbi |
|
30 |
|
nnsum4primesle9 |
|
31 |
29 30
|
syl |
|
32 |
31
|
a1d |
|
33 |
|
4nn |
|
34 |
33
|
a1i |
|
35 |
|
oveq2 |
|
36 |
35
|
oveq2d |
|
37 |
|
breq1 |
|
38 |
35
|
sumeq1d |
|
39 |
38
|
eqeq2d |
|
40 |
37 39
|
anbi12d |
|
41 |
36 40
|
rexeqbidv |
|
42 |
41
|
adantl |
|
43 |
|
4re |
|
44 |
43
|
leidi |
|
45 |
44
|
a1i |
|
46 |
|
nnsum4primeseven |
|
47 |
46
|
impcom |
|
48 |
|
r19.42v |
|
49 |
45 47 48
|
sylanbrc |
|
50 |
34 42 49
|
rspcedvd |
|
51 |
50
|
ex |
|
52 |
|
3nn |
|
53 |
52
|
a1i |
|
54 |
|
oveq2 |
|
55 |
54
|
oveq2d |
|
56 |
|
breq1 |
|
57 |
54
|
sumeq1d |
|
58 |
57
|
eqeq2d |
|
59 |
56 58
|
anbi12d |
|
60 |
55 59
|
rexeqbidv |
|
61 |
60
|
adantl |
|
62 |
|
3re |
|
63 |
|
3lt4 |
|
64 |
62 43 63
|
ltleii |
|
65 |
64
|
a1i |
|
66 |
|
6nn |
|
67 |
66
|
nnzi |
|
68 |
|
6re |
|
69 |
|
6lt9 |
|
70 |
68 5 69
|
ltleii |
|
71 |
|
eluzuzle |
|
72 |
67 70 71
|
mp2an |
|
73 |
72
|
anim1i |
|
74 |
|
nnsum4primesodd |
|
75 |
73 74
|
mpan9 |
|
76 |
|
r19.42v |
|
77 |
65 75 76
|
sylanbrc |
|
78 |
53 61 77
|
rspcedvd |
|
79 |
78
|
ex |
|
80 |
|
eluzelz |
|
81 |
|
zeoALTV |
|
82 |
80 81
|
syl |
|
83 |
51 79 82
|
mpjaodan |
|
84 |
32 83
|
jaoi |
|
85 |
14 84
|
sylbi |
|
86 |
85
|
impcom |
|
87 |
86
|
ralrimiva |
|