Metamath Proof Explorer


Theorem wtgoldbnnsum4prm

Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in Helfgott p. 4. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion wtgoldbnnsum4prm mOdd5<mmGoldbachOddWn2df1dd4n=k=1dfk

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2<9
7 4 5 6 ltleii 29
8 eluz2 922929
9 1 3 7 8 mpbir3an 92
10 fzouzsplit 922=2..^99
11 10 eleq2d 92n2n2..^99
12 9 11 ax-mp n2n2..^99
13 elun n2..^99n2..^9n9
14 12 13 bitri n2n2..^9n9
15 elfzo2 n2..^9n29n<9
16 simp1 n29n<9n2
17 df-9 9=8+1
18 17 breq2i n<9n<8+1
19 eluz2nn n2n
20 8nn 8
21 19 20 jctir n2n8
22 21 adantr n29n8
23 nnleltp1 n8n8n<8+1
24 22 23 syl n29n8n<8+1
25 24 biimprd n29n<8+1n8
26 18 25 biimtrid n29n<9n8
27 26 3impia n29n<9n8
28 16 27 jca n29n<9n2n8
29 15 28 sylbi n2..^9n2n8
30 nnsum4primesle9 n2n8df1dd4n=k=1dfk
31 29 30 syl n2..^9df1dd4n=k=1dfk
32 31 a1d n2..^9mOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
33 4nn 4
34 33 a1i n9nEvenmOdd5<mmGoldbachOddW4
35 oveq2 d=41d=14
36 35 oveq2d d=41d=14
37 breq1 d=4d444
38 35 sumeq1d d=4k=1dfk=k=14fk
39 38 eqeq2d d=4n=k=1dfkn=k=14fk
40 37 39 anbi12d d=4d4n=k=1dfk44n=k=14fk
41 36 40 rexeqbidv d=4f1dd4n=k=1dfkf1444n=k=14fk
42 41 adantl n9nEvenmOdd5<mmGoldbachOddWd=4f1dd4n=k=1dfkf1444n=k=14fk
43 4re 4
44 43 leidi 44
45 44 a1i n9nEvenmOdd5<mmGoldbachOddW44
46 nnsum4primeseven mOdd5<mmGoldbachOddWn9nEvenf14n=k=14fk
47 46 impcom n9nEvenmOdd5<mmGoldbachOddWf14n=k=14fk
48 r19.42v f1444n=k=14fk44f14n=k=14fk
49 45 47 48 sylanbrc n9nEvenmOdd5<mmGoldbachOddWf1444n=k=14fk
50 34 42 49 rspcedvd n9nEvenmOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
51 50 ex n9nEvenmOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
52 3nn 3
53 52 a1i n9nOddmOdd5<mmGoldbachOddW3
54 oveq2 d=31d=13
55 54 oveq2d d=31d=13
56 breq1 d=3d434
57 54 sumeq1d d=3k=1dfk=k=13fk
58 57 eqeq2d d=3n=k=1dfkn=k=13fk
59 56 58 anbi12d d=3d4n=k=1dfk34n=k=13fk
60 55 59 rexeqbidv d=3f1dd4n=k=1dfkf1334n=k=13fk
61 60 adantl n9nOddmOdd5<mmGoldbachOddWd=3f1dd4n=k=1dfkf1334n=k=13fk
62 3re 3
63 3lt4 3<4
64 62 43 63 ltleii 34
65 64 a1i n9nOddmOdd5<mmGoldbachOddW34
66 6nn 6
67 66 nnzi 6
68 6re 6
69 6lt9 6<9
70 68 5 69 ltleii 69
71 eluzuzle 669n9n6
72 67 70 71 mp2an n9n6
73 72 anim1i n9nOddn6nOdd
74 nnsum4primesodd mOdd5<mmGoldbachOddWn6nOddf13n=k=13fk
75 73 74 mpan9 n9nOddmOdd5<mmGoldbachOddWf13n=k=13fk
76 r19.42v f1334n=k=13fk34f13n=k=13fk
77 65 75 76 sylanbrc n9nOddmOdd5<mmGoldbachOddWf1334n=k=13fk
78 53 61 77 rspcedvd n9nOddmOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
79 78 ex n9nOddmOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
80 eluzelz n9n
81 zeoALTV nnEvennOdd
82 80 81 syl n9nEvennOdd
83 51 79 82 mpjaodan n9mOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
84 32 83 jaoi n2..^9n9mOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
85 14 84 sylbi n2mOdd5<mmGoldbachOddWdf1dd4n=k=1dfk
86 85 impcom mOdd5<mmGoldbachOddWn2df1dd4n=k=1dfk
87 86 ralrimiva mOdd5<mmGoldbachOddWn2df1dd4n=k=1dfk