Metamath Proof Explorer


Theorem wtgoldbnnsum4prm

Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in Helfgott p. 4. (Contributed by AV, 25-Jul-2020)

Ref Expression
Assertion wtgoldbnnsum4prm m Odd 5 < m m GoldbachOddW n 2 d f 1 d d 4 n = k = 1 d f k

Proof

Step Hyp Ref Expression
1 2z 2
2 9nn 9
3 2 nnzi 9
4 2re 2
5 9re 9
6 2lt9 2 < 9
7 4 5 6 ltleii 2 9
8 eluz2 9 2 2 9 2 9
9 1 3 7 8 mpbir3an 9 2
10 fzouzsplit 9 2 2 = 2 ..^ 9 9
11 10 eleq2d 9 2 n 2 n 2 ..^ 9 9
12 9 11 ax-mp n 2 n 2 ..^ 9 9
13 elun n 2 ..^ 9 9 n 2 ..^ 9 n 9
14 12 13 bitri n 2 n 2 ..^ 9 n 9
15 elfzo2 n 2 ..^ 9 n 2 9 n < 9
16 simp1 n 2 9 n < 9 n 2
17 df-9 9 = 8 + 1
18 17 breq2i n < 9 n < 8 + 1
19 eluz2nn n 2 n
20 8nn 8
21 19 20 jctir n 2 n 8
22 21 adantr n 2 9 n 8
23 nnleltp1 n 8 n 8 n < 8 + 1
24 22 23 syl n 2 9 n 8 n < 8 + 1
25 24 biimprd n 2 9 n < 8 + 1 n 8
26 18 25 syl5bi n 2 9 n < 9 n 8
27 26 3impia n 2 9 n < 9 n 8
28 16 27 jca n 2 9 n < 9 n 2 n 8
29 15 28 sylbi n 2 ..^ 9 n 2 n 8
30 nnsum4primesle9 n 2 n 8 d f 1 d d 4 n = k = 1 d f k
31 29 30 syl n 2 ..^ 9 d f 1 d d 4 n = k = 1 d f k
32 31 a1d n 2 ..^ 9 m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
33 4nn 4
34 33 a1i n 9 n Even m Odd 5 < m m GoldbachOddW 4
35 oveq2 d = 4 1 d = 1 4
36 35 oveq2d d = 4 1 d = 1 4
37 breq1 d = 4 d 4 4 4
38 35 sumeq1d d = 4 k = 1 d f k = k = 1 4 f k
39 38 eqeq2d d = 4 n = k = 1 d f k n = k = 1 4 f k
40 37 39 anbi12d d = 4 d 4 n = k = 1 d f k 4 4 n = k = 1 4 f k
41 36 40 rexeqbidv d = 4 f 1 d d 4 n = k = 1 d f k f 1 4 4 4 n = k = 1 4 f k
42 41 adantl n 9 n Even m Odd 5 < m m GoldbachOddW d = 4 f 1 d d 4 n = k = 1 d f k f 1 4 4 4 n = k = 1 4 f k
43 4re 4
44 43 leidi 4 4
45 44 a1i n 9 n Even m Odd 5 < m m GoldbachOddW 4 4
46 nnsum4primeseven m Odd 5 < m m GoldbachOddW n 9 n Even f 1 4 n = k = 1 4 f k
47 46 impcom n 9 n Even m Odd 5 < m m GoldbachOddW f 1 4 n = k = 1 4 f k
48 r19.42v f 1 4 4 4 n = k = 1 4 f k 4 4 f 1 4 n = k = 1 4 f k
49 45 47 48 sylanbrc n 9 n Even m Odd 5 < m m GoldbachOddW f 1 4 4 4 n = k = 1 4 f k
50 34 42 49 rspcedvd n 9 n Even m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
51 50 ex n 9 n Even m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
52 3nn 3
53 52 a1i n 9 n Odd m Odd 5 < m m GoldbachOddW 3
54 oveq2 d = 3 1 d = 1 3
55 54 oveq2d d = 3 1 d = 1 3
56 breq1 d = 3 d 4 3 4
57 54 sumeq1d d = 3 k = 1 d f k = k = 1 3 f k
58 57 eqeq2d d = 3 n = k = 1 d f k n = k = 1 3 f k
59 56 58 anbi12d d = 3 d 4 n = k = 1 d f k 3 4 n = k = 1 3 f k
60 55 59 rexeqbidv d = 3 f 1 d d 4 n = k = 1 d f k f 1 3 3 4 n = k = 1 3 f k
61 60 adantl n 9 n Odd m Odd 5 < m m GoldbachOddW d = 3 f 1 d d 4 n = k = 1 d f k f 1 3 3 4 n = k = 1 3 f k
62 3re 3
63 3lt4 3 < 4
64 62 43 63 ltleii 3 4
65 64 a1i n 9 n Odd m Odd 5 < m m GoldbachOddW 3 4
66 6nn 6
67 66 nnzi 6
68 6re 6
69 6lt9 6 < 9
70 68 5 69 ltleii 6 9
71 eluzuzle 6 6 9 n 9 n 6
72 67 70 71 mp2an n 9 n 6
73 72 anim1i n 9 n Odd n 6 n Odd
74 nnsum4primesodd m Odd 5 < m m GoldbachOddW n 6 n Odd f 1 3 n = k = 1 3 f k
75 73 74 mpan9 n 9 n Odd m Odd 5 < m m GoldbachOddW f 1 3 n = k = 1 3 f k
76 r19.42v f 1 3 3 4 n = k = 1 3 f k 3 4 f 1 3 n = k = 1 3 f k
77 65 75 76 sylanbrc n 9 n Odd m Odd 5 < m m GoldbachOddW f 1 3 3 4 n = k = 1 3 f k
78 53 61 77 rspcedvd n 9 n Odd m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
79 78 ex n 9 n Odd m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
80 eluzelz n 9 n
81 zeoALTV n n Even n Odd
82 80 81 syl n 9 n Even n Odd
83 51 79 82 mpjaodan n 9 m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
84 32 83 jaoi n 2 ..^ 9 n 9 m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
85 14 84 sylbi n 2 m Odd 5 < m m GoldbachOddW d f 1 d d 4 n = k = 1 d f k
86 85 impcom m Odd 5 < m m GoldbachOddW n 2 d f 1 d d 4 n = k = 1 d f k
87 86 ralrimiva m Odd 5 < m m GoldbachOddW n 2 d f 1 d d 4 n = k = 1 d f k