| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxr |  | 
						
							| 2 |  | simpll |  | 
						
							| 3 | 2 | rexrd |  | 
						
							| 4 |  | xnegneg |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 | 3 | xnegcld |  | 
						
							| 7 |  | xaddlid |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | simplr |  | 
						
							| 10 |  | xaddcom |  | 
						
							| 11 | 3 9 10 | syl2anc |  | 
						
							| 12 | 11 | oveq1d |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 |  | xpncan |  | 
						
							| 16 | 15 | ancoms |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 12 14 17 | 3eqtr3d |  | 
						
							| 19 | 8 18 | eqtr3d |  | 
						
							| 20 |  | xnegeq |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 | 5 21 | eqtr3d |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 |  | simpll |  | 
						
							| 25 |  | simplr |  | 
						
							| 26 | 24 | oveq1d |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 26 27 | eqtr3d |  | 
						
							| 29 |  | 0re |  | 
						
							| 30 |  | renepnf |  | 
						
							| 31 | 29 30 | mp1i |  | 
						
							| 32 | 28 31 | eqnetrd |  | 
						
							| 33 | 32 | neneqd |  | 
						
							| 34 |  | xaddpnf2 |  | 
						
							| 35 | 34 | stoic1a |  | 
						
							| 36 | 25 33 35 | syl2anc |  | 
						
							| 37 |  | nne |  | 
						
							| 38 | 36 37 | sylib |  | 
						
							| 39 |  | xnegeq |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 |  | xnegmnf |  | 
						
							| 42 | 40 41 | eqtr2di |  | 
						
							| 43 | 24 42 | eqtrd |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 |  | simpll |  | 
						
							| 46 |  | simplr |  | 
						
							| 47 | 45 | oveq1d |  | 
						
							| 48 |  | simpr |  | 
						
							| 49 | 47 48 | eqtr3d |  | 
						
							| 50 |  | renemnf |  | 
						
							| 51 | 29 50 | mp1i |  | 
						
							| 52 | 49 51 | eqnetrd |  | 
						
							| 53 | 52 | neneqd |  | 
						
							| 54 |  | xaddmnf2 |  | 
						
							| 55 | 54 | stoic1a |  | 
						
							| 56 | 46 53 55 | syl2anc |  | 
						
							| 57 |  | nne |  | 
						
							| 58 | 56 57 | sylib |  | 
						
							| 59 |  | xnegeq |  | 
						
							| 60 | 58 59 | syl |  | 
						
							| 61 |  | xnegpnf |  | 
						
							| 62 | 60 61 | eqtr2di |  | 
						
							| 63 | 45 62 | eqtrd |  | 
						
							| 64 | 63 | ex |  | 
						
							| 65 | 23 44 64 | 3jaoian |  | 
						
							| 66 | 1 65 | sylanb |  | 
						
							| 67 |  | simpr |  | 
						
							| 68 | 67 | oveq1d |  | 
						
							| 69 |  | xnegcl |  | 
						
							| 70 | 69 | ad2antlr |  | 
						
							| 71 |  | simplr |  | 
						
							| 72 |  | xaddcom |  | 
						
							| 73 | 70 71 72 | syl2anc |  | 
						
							| 74 |  | xnegid |  | 
						
							| 75 | 74 | ad2antlr |  | 
						
							| 76 | 68 73 75 | 3eqtrd |  | 
						
							| 77 | 76 | ex |  | 
						
							| 78 | 66 77 | impbid |  |