Metamath Proof Explorer


Theorem xpmapenlem

Description: Lemma for xpmapen . (Contributed by NM, 1-May-2004) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypotheses xpmapen.1 AV
xpmapen.2 BV
xpmapen.3 CV
xpmapenlem.4 D=zC1stxz
xpmapenlem.5 R=zC2ndxz
xpmapenlem.6 S=zC1styz2ndyz
Assertion xpmapenlem A×BCAC×BC

Proof

Step Hyp Ref Expression
1 xpmapen.1 AV
2 xpmapen.2 BV
3 xpmapen.3 CV
4 xpmapenlem.4 D=zC1stxz
5 xpmapenlem.5 R=zC2ndxz
6 xpmapenlem.6 S=zC1styz2ndyz
7 ovex A×BCV
8 ovex ACV
9 ovex BCV
10 8 9 xpex AC×BCV
11 1 2 xpex A×BV
12 11 3 elmap xA×BCx:CA×B
13 ffvelcdm x:CA×BzCxzA×B
14 12 13 sylanb xA×BCzCxzA×B
15 xp1st xzA×B1stxzA
16 14 15 syl xA×BCzC1stxzA
17 16 4 fmptd xA×BCD:CA
18 1 3 elmap DACD:CA
19 17 18 sylibr xA×BCDAC
20 xp2nd xzA×B2ndxzB
21 14 20 syl xA×BCzC2ndxzB
22 21 5 fmptd xA×BCR:CB
23 2 3 elmap RBCR:CB
24 22 23 sylibr xA×BCRBC
25 19 24 opelxpd xA×BCDRAC×BC
26 xp1st yAC×BC1styAC
27 1 3 elmap 1styAC1sty:CA
28 26 27 sylib yAC×BC1sty:CA
29 28 ffvelcdmda yAC×BCzC1styzA
30 xp2nd yAC×BC2ndyBC
31 2 3 elmap 2ndyBC2ndy:CB
32 30 31 sylib yAC×BC2ndy:CB
33 32 ffvelcdmda yAC×BCzC2ndyzB
34 29 33 opelxpd yAC×BCzC1styz2ndyzA×B
35 34 6 fmptd yAC×BCS:CA×B
36 11 3 elmap SA×BCS:CA×B
37 35 36 sylibr yAC×BCSA×BC
38 1st2nd2 yAC×BCy=1sty2ndy
39 38 ad2antlr xA×BCyAC×BCx=Sy=1sty2ndy
40 28 feqmptd yAC×BC1sty=zC1styz
41 40 ad2antlr xA×BCyAC×BCx=S1sty=zC1styz
42 simplr xA×BCyAC×BCx=SzCx=S
43 42 fveq1d xA×BCyAC×BCx=SzCxz=Sz
44 opex 1styz2ndyzV
45 6 fvmpt2 zC1styz2ndyzVSz=1styz2ndyz
46 44 45 mpan2 zCSz=1styz2ndyz
47 46 adantl xA×BCyAC×BCx=SzCSz=1styz2ndyz
48 43 47 eqtrd xA×BCyAC×BCx=SzCxz=1styz2ndyz
49 48 fveq2d xA×BCyAC×BCx=SzC1stxz=1st1styz2ndyz
50 fvex 1styzV
51 fvex 2ndyzV
52 50 51 op1st 1st1styz2ndyz=1styz
53 49 52 eqtrdi xA×BCyAC×BCx=SzC1stxz=1styz
54 53 mpteq2dva xA×BCyAC×BCx=SzC1stxz=zC1styz
55 4 54 eqtrid xA×BCyAC×BCx=SD=zC1styz
56 41 55 eqtr4d xA×BCyAC×BCx=S1sty=D
57 32 feqmptd yAC×BC2ndy=zC2ndyz
58 57 ad2antlr xA×BCyAC×BCx=S2ndy=zC2ndyz
59 48 fveq2d xA×BCyAC×BCx=SzC2ndxz=2nd1styz2ndyz
60 50 51 op2nd 2nd1styz2ndyz=2ndyz
61 59 60 eqtrdi xA×BCyAC×BCx=SzC2ndxz=2ndyz
62 61 mpteq2dva xA×BCyAC×BCx=SzC2ndxz=zC2ndyz
63 5 62 eqtrid xA×BCyAC×BCx=SR=zC2ndyz
64 58 63 eqtr4d xA×BCyAC×BCx=S2ndy=R
65 56 64 opeq12d xA×BCyAC×BCx=S1sty2ndy=DR
66 39 65 eqtrd xA×BCyAC×BCx=Sy=DR
67 simpll xA×BCyAC×BCy=DRxA×BC
68 67 12 sylib xA×BCyAC×BCy=DRx:CA×B
69 68 feqmptd xA×BCyAC×BCy=DRx=zCxz
70 simpr xA×BCyAC×BCy=DRy=DR
71 70 fveq2d xA×BCyAC×BCy=DR1sty=1stDR
72 19 ad2antrr xA×BCyAC×BCy=DRDAC
73 24 ad2antrr xA×BCyAC×BCy=DRRBC
74 op1stg DACRBC1stDR=D
75 72 73 74 syl2anc xA×BCyAC×BCy=DR1stDR=D
76 71 75 eqtrd xA×BCyAC×BCy=DR1sty=D
77 76 fveq1d xA×BCyAC×BCy=DR1styz=Dz
78 fvex 1stxzV
79 4 fvmpt2 zC1stxzVDz=1stxz
80 78 79 mpan2 zCDz=1stxz
81 77 80 sylan9eq xA×BCyAC×BCy=DRzC1styz=1stxz
82 70 fveq2d xA×BCyAC×BCy=DR2ndy=2ndDR
83 op2ndg DACRBC2ndDR=R
84 72 73 83 syl2anc xA×BCyAC×BCy=DR2ndDR=R
85 82 84 eqtrd xA×BCyAC×BCy=DR2ndy=R
86 85 fveq1d xA×BCyAC×BCy=DR2ndyz=Rz
87 fvex 2ndxzV
88 5 fvmpt2 zC2ndxzVRz=2ndxz
89 87 88 mpan2 zCRz=2ndxz
90 86 89 sylan9eq xA×BCyAC×BCy=DRzC2ndyz=2ndxz
91 81 90 opeq12d xA×BCyAC×BCy=DRzC1styz2ndyz=1stxz2ndxz
92 68 ffvelcdmda xA×BCyAC×BCy=DRzCxzA×B
93 1st2nd2 xzA×Bxz=1stxz2ndxz
94 92 93 syl xA×BCyAC×BCy=DRzCxz=1stxz2ndxz
95 91 94 eqtr4d xA×BCyAC×BCy=DRzC1styz2ndyz=xz
96 95 mpteq2dva xA×BCyAC×BCy=DRzC1styz2ndyz=zCxz
97 6 96 eqtrid xA×BCyAC×BCy=DRS=zCxz
98 69 97 eqtr4d xA×BCyAC×BCy=DRx=S
99 66 98 impbida xA×BCyAC×BCx=Sy=DR
100 7 10 25 37 99 en3i A×BCAC×BC