Metamath Proof Explorer


Theorem zartopn

Description: The Zariski topology is a topology, and its closed sets are images by V of the ideals of R . (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypotheses zartop.1 No typesetting found for |- S = ( Spec ` R ) with typecode |-
zartop.2 J = TopOpen S
zarcls.1 No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
zarcls.2 V = i LIdeal R j P | i j
Assertion zartopn R CRing J TopOn P ran V = Clsd J

Proof

Step Hyp Ref Expression
1 zartop.1 Could not format S = ( Spec ` R ) : No typesetting found for |- S = ( Spec ` R ) with typecode |-
2 zartop.2 J = TopOpen S
3 zarcls.1 Could not format P = ( PrmIdeal ` R ) : No typesetting found for |- P = ( PrmIdeal ` R ) with typecode |-
4 zarcls.2 V = i LIdeal R j P | i j
5 ssrab2 j P | i j P
6 3 fvexi P V
7 6 elpw2 j P | i j 𝒫 P j P | i j P
8 5 7 mpbir j P | i j 𝒫 P
9 8 rgenw i LIdeal R j P | i j 𝒫 P
10 4 rnmptss i LIdeal R j P | i j 𝒫 P ran V 𝒫 P
11 9 10 ax-mp ran V 𝒫 P
12 11 a1i R CRing ran V 𝒫 P
13 crngring R CRing R Ring
14 3 rabeqi Could not format { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } : No typesetting found for |- { j e. P | i C_ j } = { j e. ( PrmIdeal ` R ) | i C_ j } with typecode |-
15 14 mpteq2i Could not format ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- ( i e. ( LIdeal ` R ) |-> { j e. P | i C_ j } ) = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
16 4 15 eqtri Could not format V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) : No typesetting found for |- V = ( i e. ( LIdeal ` R ) |-> { j e. ( PrmIdeal ` R ) | i C_ j } ) with typecode |-
17 eqid 0 R = 0 R
18 16 3 17 zarcls0 R Ring V 0 R = P
19 4 funmpt2 Fun V
20 eqid LIdeal R = LIdeal R
21 20 17 lidl0 R Ring 0 R LIdeal R
22 6 rabex j P | i j V
23 22 4 dmmpti dom V = LIdeal R
24 21 23 eleqtrrdi R Ring 0 R dom V
25 fvelrn Fun V 0 R dom V V 0 R ran V
26 19 24 25 sylancr R Ring V 0 R ran V
27 18 26 eqeltrrd R Ring P ran V
28 13 27 syl R CRing P ran V
29 16 zarclsint R CRing z ran V z z ran V
30 12 28 29 ismred R CRing ran V Moore P
31 eqid Base R = Base R
32 23 31 lidl1 R Ring Base R dom V
33 13 32 syl R CRing Base R dom V
34 33 23 eleqtrdi R CRing Base R LIdeal R
35 16 31 zarcls1 R CRing Base R LIdeal R V Base R = Base R = Base R
36 31 35 mpbiri R CRing Base R LIdeal R V Base R =
37 34 36 mpdan R CRing V Base R =
38 19 a1i R CRing Fun V
39 fvelrn Fun V Base R dom V V Base R ran V
40 38 33 39 syl2anc R CRing V Base R ran V
41 37 40 eqeltrrd R CRing ran V
42 16 zarclsun R CRing x ran V y ran V x y ran V
43 eqid s 𝒫 P | P s ran V = s 𝒫 P | P s ran V
44 30 41 42 43 mretopd R CRing s 𝒫 P | P s ran V TopOn P ran V = Clsd s 𝒫 P | P s ran V
45 1 2 3 4 zarcls R Ring J = s 𝒫 P | P s ran V
46 13 45 syl R CRing J = s 𝒫 P | P s ran V
47 46 eleq1d R CRing J TopOn P s 𝒫 P | P s ran V TopOn P
48 46 fveq2d R CRing Clsd J = Clsd s 𝒫 P | P s ran V
49 48 eqeq2d R CRing ran V = Clsd J ran V = Clsd s 𝒫 P | P s ran V
50 47 49 anbi12d R CRing J TopOn P ran V = Clsd J s 𝒫 P | P s ran V TopOn P ran V = Clsd s 𝒫 P | P s ran V
51 44 50 mpbird R CRing J TopOn P ran V = Clsd J