Metamath Proof Explorer


Theorem zrhnm

Description: The norm of the image by ZRHom of an integer in a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses nmmulg.x B = Base R
nmmulg.n N = norm R
nmmulg.z Z = ℤMod R
zrhnm.1 L = ℤRHom R
Assertion zrhnm Z NrmMod Z NrmRing R NzRing M N L M = M

Proof

Step Hyp Ref Expression
1 nmmulg.x B = Base R
2 nmmulg.n N = norm R
3 nmmulg.z Z = ℤMod R
4 zrhnm.1 L = ℤRHom R
5 simpl3 Z NrmMod Z NrmRing R NzRing M R NzRing
6 nzrring R NzRing R Ring
7 5 6 syl Z NrmMod Z NrmRing R NzRing M R Ring
8 simpr Z NrmMod Z NrmRing R NzRing M M
9 eqid R = R
10 eqid 1 R = 1 R
11 4 9 10 zrhmulg R Ring M L M = M R 1 R
12 11 fveq2d R Ring M N L M = N M R 1 R
13 7 8 12 syl2anc Z NrmMod Z NrmRing R NzRing M N L M = N M R 1 R
14 simpl1 Z NrmMod Z NrmRing R NzRing M Z NrmMod
15 1 10 ringidcl R Ring 1 R B
16 7 15 syl Z NrmMod Z NrmRing R NzRing M 1 R B
17 1 2 3 9 nmmulg Z NrmMod M 1 R B N M R 1 R = M N 1 R
18 14 8 16 17 syl3anc Z NrmMod Z NrmRing R NzRing M N M R 1 R = M N 1 R
19 3 2 zlmnm R NzRing N = norm Z
20 5 19 syl Z NrmMod Z NrmRing R NzRing M N = norm Z
21 20 fveq1d Z NrmMod Z NrmRing R NzRing M N 1 R = norm Z 1 R
22 simpl2 Z NrmMod Z NrmRing R NzRing M Z NrmRing
23 nrgring Z NrmRing Z Ring
24 22 23 syl Z NrmMod Z NrmRing R NzRing M Z Ring
25 eqid 0 R = 0 R
26 10 25 nzrnz R NzRing 1 R 0 R
27 5 26 syl Z NrmMod Z NrmRing R NzRing M 1 R 0 R
28 3 10 zlm1 1 R = 1 Z
29 3 25 zlm0 0 R = 0 Z
30 28 29 isnzr Z NzRing Z Ring 1 R 0 R
31 24 27 30 sylanbrc Z NrmMod Z NrmRing R NzRing M Z NzRing
32 eqid norm Z = norm Z
33 32 28 nm1 Z NrmRing Z NzRing norm Z 1 R = 1
34 22 31 33 syl2anc Z NrmMod Z NrmRing R NzRing M norm Z 1 R = 1
35 21 34 eqtrd Z NrmMod Z NrmRing R NzRing M N 1 R = 1
36 35 oveq2d Z NrmMod Z NrmRing R NzRing M M N 1 R = M 1
37 13 18 36 3eqtrd Z NrmMod Z NrmRing R NzRing M N L M = M 1
38 8 zcnd Z NrmMod Z NrmRing R NzRing M M
39 abscl M M
40 39 recnd M M
41 mulid1 M M 1 = M
42 38 40 41 3syl Z NrmMod Z NrmRing R NzRing M M 1 = M
43 37 42 eqtrd Z NrmMod Z NrmRing R NzRing M N L M = M