| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmmulg.x |  | 
						
							| 2 |  | nmmulg.n |  | 
						
							| 3 |  | nmmulg.z |  | 
						
							| 4 |  | zrhnm.1 |  | 
						
							| 5 |  | simpl3 |  | 
						
							| 6 |  | nzrring |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 4 9 10 | zrhmulg |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 7 8 12 | syl2anc |  | 
						
							| 14 |  | simpl1 |  | 
						
							| 15 | 1 10 | ringidcl |  | 
						
							| 16 | 7 15 | syl |  | 
						
							| 17 | 1 2 3 9 | nmmulg |  | 
						
							| 18 | 14 8 16 17 | syl3anc |  | 
						
							| 19 | 3 2 | zlmnm |  | 
						
							| 20 | 5 19 | syl |  | 
						
							| 21 | 20 | fveq1d |  | 
						
							| 22 |  | simpl2 |  | 
						
							| 23 |  | nrgring |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 10 25 | nzrnz |  | 
						
							| 27 | 5 26 | syl |  | 
						
							| 28 | 3 10 | zlm1 |  | 
						
							| 29 | 3 25 | zlm0 |  | 
						
							| 30 | 28 29 | isnzr |  | 
						
							| 31 | 24 27 30 | sylanbrc |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 32 28 | nm1 |  | 
						
							| 34 | 22 31 33 | syl2anc |  | 
						
							| 35 | 21 34 | eqtrd |  | 
						
							| 36 | 35 | oveq2d |  | 
						
							| 37 | 13 18 36 | 3eqtrd |  | 
						
							| 38 | 8 | zcnd |  | 
						
							| 39 |  | abscl |  | 
						
							| 40 | 39 | recnd |  | 
						
							| 41 |  | mulrid |  | 
						
							| 42 | 38 40 41 | 3syl |  | 
						
							| 43 | 37 42 | eqtrd |  |