| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1417.1 |
⊢ ( 𝜑 ↔ 𝑅 FrSe 𝐴 ) |
| 2 |
|
bnj1417.2 |
⊢ ( 𝜓 ↔ ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 3 |
|
bnj1417.3 |
⊢ ( 𝜒 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 4 |
|
bnj1417.4 |
⊢ ( 𝜃 ↔ ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) |
| 5 |
|
bnj1417.5 |
⊢ 𝐵 = ( pred ( 𝑥 , 𝐴 , 𝑅 ) ∪ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 6 |
1
|
biimpi |
⊢ ( 𝜑 → 𝑅 FrSe 𝐴 ) |
| 7 |
|
bnj1418 |
⊢ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜃 ∧ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → 𝑥 𝑅 𝑥 ) |
| 9 |
4 6
|
bnj835 |
⊢ ( 𝜃 → 𝑅 FrSe 𝐴 ) |
| 10 |
|
df-bnj15 |
⊢ ( 𝑅 FrSe 𝐴 ↔ ( 𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
| 11 |
10
|
simplbi |
⊢ ( 𝑅 FrSe 𝐴 → 𝑅 Fr 𝐴 ) |
| 12 |
9 11
|
syl |
⊢ ( 𝜃 → 𝑅 Fr 𝐴 ) |
| 13 |
|
bnj213 |
⊢ pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 14 |
13
|
sseli |
⊢ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑥 ∈ 𝐴 ) |
| 15 |
|
frirr |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 16 |
12 14 15
|
syl2an |
⊢ ( ( 𝜃 ∧ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ¬ 𝑥 𝑅 𝑥 ) |
| 17 |
8 16
|
pm2.65da |
⊢ ( 𝜃 → ¬ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 19 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 20 |
3
|
bnj1095 |
⊢ ( 𝜒 → ∀ 𝑦 𝜒 ) |
| 21 |
20
|
nf5i |
⊢ Ⅎ 𝑦 𝜒 |
| 22 |
18 19 21
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) |
| 23 |
4 22
|
nfxfr |
⊢ Ⅎ 𝑦 𝜃 |
| 24 |
9
|
ad2antrr |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑅 FrSe 𝐴 ) |
| 25 |
|
simplr |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 26 |
13 25
|
sselid |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ 𝐴 ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 28 |
|
bnj1125 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 29 |
24 26 27 28
|
syl3anc |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 30 |
|
bnj1147 |
⊢ trCl ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐴 |
| 31 |
30 27
|
sselid |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑥 ∈ 𝐴 ) |
| 32 |
|
bnj906 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 33 |
24 31 32
|
syl2anc |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 34 |
33 25
|
sseldd |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 35 |
29 34
|
sseldd |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 36 |
3
|
biimpi |
⊢ ( 𝜒 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 37 |
4 36
|
bnj837 |
⊢ ( 𝜃 → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 39 |
|
bnj1418 |
⊢ ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → 𝑦 𝑅 𝑥 ) |
| 40 |
39
|
ad2antlr |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑦 𝑅 𝑥 ) |
| 41 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) → ( 𝑦 ∈ 𝐴 → ( 𝑦 𝑅 𝑥 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 42 |
38 26 40 41
|
syl3c |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → [ 𝑦 / 𝑥 ] 𝜓 ) |
| 43 |
|
vex |
⊢ 𝑦 ∈ V |
| 44 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 45 |
|
bnj1318 |
⊢ ( 𝑥 = 𝑦 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 46 |
45
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 47 |
44 46
|
bitrd |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 48 |
47
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 49 |
2 48
|
bitrid |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 50 |
43 49
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜓 ↔ ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 51 |
42 50
|
sylib |
⊢ ( ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ∧ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) → ¬ 𝑦 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 52 |
35 51
|
pm2.65da |
⊢ ( ( 𝜃 ∧ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 53 |
52
|
ex |
⊢ ( 𝜃 → ( 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) → ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 54 |
23 53
|
ralrimi |
⊢ ( 𝜃 → ∀ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 55 |
|
ralnex |
⊢ ( ∀ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ¬ 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ↔ ¬ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 56 |
54 55
|
sylib |
⊢ ( 𝜃 → ¬ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 57 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ↔ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝑥 ∈ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 58 |
56 57
|
sylnibr |
⊢ ( 𝜃 → ¬ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 59 |
|
ioran |
⊢ ( ¬ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ¬ 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ¬ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 60 |
17 58 59
|
sylanbrc |
⊢ ( 𝜃 → ¬ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 61 |
4
|
simp2bi |
⊢ ( 𝜃 → 𝑥 ∈ 𝐴 ) |
| 62 |
5
|
bnj1414 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → trCl ( 𝑥 , 𝐴 , 𝑅 ) = 𝐵 ) |
| 63 |
9 61 62
|
syl2anc |
⊢ ( 𝜃 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = 𝐵 ) |
| 64 |
63
|
eleq2d |
⊢ ( 𝜃 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 65 |
5
|
bnj1138 |
⊢ ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 66 |
64 65
|
bitrdi |
⊢ ( 𝜃 → ( 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑥 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) ∨ 𝑥 ∈ ∪ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 67 |
60 66
|
mtbird |
⊢ ( 𝜃 → ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 68 |
67 2
|
sylibr |
⊢ ( 𝜃 → 𝜓 ) |
| 69 |
4 68
|
sylbir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒 ) → 𝜓 ) |
| 70 |
69
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜒 → 𝜓 ) ) ) |
| 71 |
70
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝜓 ) ) |
| 72 |
3
|
bnj1204 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝜒 → 𝜓 ) ) → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
| 73 |
6 71 72
|
syl2anc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
| 74 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 75 |
73 74
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |