| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1417.1 |
|- ( ph <-> R _FrSe A ) |
| 2 |
|
bnj1417.2 |
|- ( ps <-> -. x e. _trCl ( x , A , R ) ) |
| 3 |
|
bnj1417.3 |
|- ( ch <-> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
| 4 |
|
bnj1417.4 |
|- ( th <-> ( ph /\ x e. A /\ ch ) ) |
| 5 |
|
bnj1417.5 |
|- B = ( _pred ( x , A , R ) u. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) |
| 6 |
1
|
biimpi |
|- ( ph -> R _FrSe A ) |
| 7 |
|
bnj1418 |
|- ( x e. _pred ( x , A , R ) -> x R x ) |
| 8 |
7
|
adantl |
|- ( ( th /\ x e. _pred ( x , A , R ) ) -> x R x ) |
| 9 |
4 6
|
bnj835 |
|- ( th -> R _FrSe A ) |
| 10 |
|
df-bnj15 |
|- ( R _FrSe A <-> ( R Fr A /\ R _Se A ) ) |
| 11 |
10
|
simplbi |
|- ( R _FrSe A -> R Fr A ) |
| 12 |
9 11
|
syl |
|- ( th -> R Fr A ) |
| 13 |
|
bnj213 |
|- _pred ( x , A , R ) C_ A |
| 14 |
13
|
sseli |
|- ( x e. _pred ( x , A , R ) -> x e. A ) |
| 15 |
|
frirr |
|- ( ( R Fr A /\ x e. A ) -> -. x R x ) |
| 16 |
12 14 15
|
syl2an |
|- ( ( th /\ x e. _pred ( x , A , R ) ) -> -. x R x ) |
| 17 |
8 16
|
pm2.65da |
|- ( th -> -. x e. _pred ( x , A , R ) ) |
| 18 |
|
nfv |
|- F/ y ph |
| 19 |
|
nfv |
|- F/ y x e. A |
| 20 |
3
|
bnj1095 |
|- ( ch -> A. y ch ) |
| 21 |
20
|
nf5i |
|- F/ y ch |
| 22 |
18 19 21
|
nf3an |
|- F/ y ( ph /\ x e. A /\ ch ) |
| 23 |
4 22
|
nfxfr |
|- F/ y th |
| 24 |
9
|
ad2antrr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> R _FrSe A ) |
| 25 |
|
simplr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _pred ( x , A , R ) ) |
| 26 |
13 25
|
sselid |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. A ) |
| 27 |
|
simpr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> x e. _trCl ( y , A , R ) ) |
| 28 |
|
bnj1125 |
|- ( ( R _FrSe A /\ y e. A /\ x e. _trCl ( y , A , R ) ) -> _trCl ( x , A , R ) C_ _trCl ( y , A , R ) ) |
| 29 |
24 26 27 28
|
syl3anc |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> _trCl ( x , A , R ) C_ _trCl ( y , A , R ) ) |
| 30 |
|
bnj1147 |
|- _trCl ( y , A , R ) C_ A |
| 31 |
30 27
|
sselid |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> x e. A ) |
| 32 |
|
bnj906 |
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
| 33 |
24 31 32
|
syl2anc |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> _pred ( x , A , R ) C_ _trCl ( x , A , R ) ) |
| 34 |
33 25
|
sseldd |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _trCl ( x , A , R ) ) |
| 35 |
29 34
|
sseldd |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y e. _trCl ( y , A , R ) ) |
| 36 |
3
|
biimpi |
|- ( ch -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
| 37 |
4 36
|
bnj837 |
|- ( th -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> A. y e. A ( y R x -> [. y / x ]. ps ) ) |
| 39 |
|
bnj1418 |
|- ( y e. _pred ( x , A , R ) -> y R x ) |
| 40 |
39
|
ad2antlr |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> y R x ) |
| 41 |
|
rsp |
|- ( A. y e. A ( y R x -> [. y / x ]. ps ) -> ( y e. A -> ( y R x -> [. y / x ]. ps ) ) ) |
| 42 |
38 26 40 41
|
syl3c |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> [. y / x ]. ps ) |
| 43 |
|
vex |
|- y e. _V |
| 44 |
|
eleq1w |
|- ( x = y -> ( x e. _trCl ( x , A , R ) <-> y e. _trCl ( x , A , R ) ) ) |
| 45 |
|
bnj1318 |
|- ( x = y -> _trCl ( x , A , R ) = _trCl ( y , A , R ) ) |
| 46 |
45
|
eleq2d |
|- ( x = y -> ( y e. _trCl ( x , A , R ) <-> y e. _trCl ( y , A , R ) ) ) |
| 47 |
44 46
|
bitrd |
|- ( x = y -> ( x e. _trCl ( x , A , R ) <-> y e. _trCl ( y , A , R ) ) ) |
| 48 |
47
|
notbid |
|- ( x = y -> ( -. x e. _trCl ( x , A , R ) <-> -. y e. _trCl ( y , A , R ) ) ) |
| 49 |
2 48
|
bitrid |
|- ( x = y -> ( ps <-> -. y e. _trCl ( y , A , R ) ) ) |
| 50 |
43 49
|
sbcie |
|- ( [. y / x ]. ps <-> -. y e. _trCl ( y , A , R ) ) |
| 51 |
42 50
|
sylib |
|- ( ( ( th /\ y e. _pred ( x , A , R ) ) /\ x e. _trCl ( y , A , R ) ) -> -. y e. _trCl ( y , A , R ) ) |
| 52 |
35 51
|
pm2.65da |
|- ( ( th /\ y e. _pred ( x , A , R ) ) -> -. x e. _trCl ( y , A , R ) ) |
| 53 |
52
|
ex |
|- ( th -> ( y e. _pred ( x , A , R ) -> -. x e. _trCl ( y , A , R ) ) ) |
| 54 |
23 53
|
ralrimi |
|- ( th -> A. y e. _pred ( x , A , R ) -. x e. _trCl ( y , A , R ) ) |
| 55 |
|
ralnex |
|- ( A. y e. _pred ( x , A , R ) -. x e. _trCl ( y , A , R ) <-> -. E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
| 56 |
54 55
|
sylib |
|- ( th -> -. E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
| 57 |
|
eliun |
|- ( x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) <-> E. y e. _pred ( x , A , R ) x e. _trCl ( y , A , R ) ) |
| 58 |
56 57
|
sylnibr |
|- ( th -> -. x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) |
| 59 |
|
ioran |
|- ( -. ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) <-> ( -. x e. _pred ( x , A , R ) /\ -. x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
| 60 |
17 58 59
|
sylanbrc |
|- ( th -> -. ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
| 61 |
4
|
simp2bi |
|- ( th -> x e. A ) |
| 62 |
5
|
bnj1414 |
|- ( ( R _FrSe A /\ x e. A ) -> _trCl ( x , A , R ) = B ) |
| 63 |
9 61 62
|
syl2anc |
|- ( th -> _trCl ( x , A , R ) = B ) |
| 64 |
63
|
eleq2d |
|- ( th -> ( x e. _trCl ( x , A , R ) <-> x e. B ) ) |
| 65 |
5
|
bnj1138 |
|- ( x e. B <-> ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) |
| 66 |
64 65
|
bitrdi |
|- ( th -> ( x e. _trCl ( x , A , R ) <-> ( x e. _pred ( x , A , R ) \/ x e. U_ y e. _pred ( x , A , R ) _trCl ( y , A , R ) ) ) ) |
| 67 |
60 66
|
mtbird |
|- ( th -> -. x e. _trCl ( x , A , R ) ) |
| 68 |
67 2
|
sylibr |
|- ( th -> ps ) |
| 69 |
4 68
|
sylbir |
|- ( ( ph /\ x e. A /\ ch ) -> ps ) |
| 70 |
69
|
3exp |
|- ( ph -> ( x e. A -> ( ch -> ps ) ) ) |
| 71 |
70
|
ralrimiv |
|- ( ph -> A. x e. A ( ch -> ps ) ) |
| 72 |
3
|
bnj1204 |
|- ( ( R _FrSe A /\ A. x e. A ( ch -> ps ) ) -> A. x e. A ps ) |
| 73 |
6 71 72
|
syl2anc |
|- ( ph -> A. x e. A ps ) |
| 74 |
2
|
ralbii |
|- ( A. x e. A ps <-> A. x e. A -. x e. _trCl ( x , A , R ) ) |
| 75 |
73 74
|
sylib |
|- ( ph -> A. x e. A -. x e. _trCl ( x , A , R ) ) |