| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfcom.s |
⊢ 𝑆 = dom ( ω CNF 𝐴 ) |
| 2 |
|
cnfcom.a |
⊢ ( 𝜑 → 𝐴 ∈ On ) |
| 3 |
|
cnfcom.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
| 4 |
|
cnfcom.f |
⊢ 𝐹 = ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) |
| 5 |
|
cnfcom.g |
⊢ 𝐺 = OrdIso ( E , ( 𝐹 supp ∅ ) ) |
| 6 |
|
cnfcom.h |
⊢ 𝐻 = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( 𝑀 +o 𝑧 ) ) , ∅ ) |
| 7 |
|
cnfcom.t |
⊢ 𝑇 = seqω ( ( 𝑘 ∈ V , 𝑓 ∈ V ↦ 𝐾 ) , ∅ ) |
| 8 |
|
cnfcom.m |
⊢ 𝑀 = ( ( ω ↑o ( 𝐺 ‘ 𝑘 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 9 |
|
cnfcom.k |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝑀 ↦ ( dom 𝑓 +o 𝑥 ) ) ∪ ◡ ( 𝑥 ∈ dom 𝑓 ↦ ( 𝑀 +o 𝑥 ) ) ) |
| 10 |
|
cnfcom.1 |
⊢ ( 𝜑 → 𝐼 ∈ dom 𝐺 ) |
| 11 |
|
omelon |
⊢ ω ∈ On |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → ω ∈ On ) |
| 13 |
1 12 2
|
cantnff1o |
⊢ ( 𝜑 → ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) ) |
| 14 |
|
f1ocnv |
⊢ ( ( ω CNF 𝐴 ) : 𝑆 –1-1-onto→ ( ω ↑o 𝐴 ) → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 ) |
| 15 |
|
f1of |
⊢ ( ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) –1-1-onto→ 𝑆 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 16 |
13 14 15
|
3syl |
⊢ ( 𝜑 → ◡ ( ω CNF 𝐴 ) : ( ω ↑o 𝐴 ) ⟶ 𝑆 ) |
| 17 |
16 3
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ ( ω CNF 𝐴 ) ‘ 𝐵 ) ∈ 𝑆 ) |
| 18 |
4 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 19 |
1 12 2 5 18
|
cantnfcl |
⊢ ( 𝜑 → ( E We ( 𝐹 supp ∅ ) ∧ dom 𝐺 ∈ ω ) ) |
| 20 |
19
|
simprd |
⊢ ( 𝜑 → dom 𝐺 ∈ ω ) |
| 21 |
|
elnn |
⊢ ( ( 𝐼 ∈ dom 𝐺 ∧ dom 𝐺 ∈ ω ) → 𝐼 ∈ ω ) |
| 22 |
10 20 21
|
syl2anc |
⊢ ( 𝜑 → 𝐼 ∈ ω ) |
| 23 |
|
eleq1 |
⊢ ( 𝑤 = 𝐼 → ( 𝑤 ∈ dom 𝐺 ↔ 𝐼 ∈ dom 𝐺 ) ) |
| 24 |
|
suceq |
⊢ ( 𝑤 = 𝐼 → suc 𝑤 = suc 𝐼 ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝐼 ) ) |
| 26 |
24
|
fveq2d |
⊢ ( 𝑤 = 𝐼 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝐼 ) ) |
| 27 |
|
fveq2 |
⊢ ( 𝑤 = 𝐼 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝐼 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑤 = 𝐼 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ) |
| 29 |
|
2fveq3 |
⊢ ( 𝑤 = 𝐼 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) |
| 30 |
28 29
|
oveq12d |
⊢ ( 𝑤 = 𝐼 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |
| 31 |
25 26 30
|
f1oeq123d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 32 |
23 31
|
imbi12d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 33 |
32
|
imbi2d |
⊢ ( 𝑤 = 𝐼 → ( ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ↔ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) ) |
| 34 |
|
eleq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ dom 𝐺 ↔ ∅ ∈ dom 𝐺 ) ) |
| 35 |
|
suceq |
⊢ ( 𝑤 = ∅ → suc 𝑤 = suc ∅ ) |
| 36 |
35
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc ∅ ) ) |
| 37 |
35
|
fveq2d |
⊢ ( 𝑤 = ∅ → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc ∅ ) ) |
| 38 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ ∅ ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 40 |
|
2fveq3 |
⊢ ( 𝑤 = ∅ → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑤 = ∅ → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 42 |
36 37 41
|
f1oeq123d |
⊢ ( 𝑤 = ∅ → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 43 |
34 42
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) ) |
| 44 |
|
eleq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ 𝑦 ∈ dom 𝐺 ) ) |
| 45 |
|
suceq |
⊢ ( 𝑤 = 𝑦 → suc 𝑤 = suc 𝑦 ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc 𝑦 ) ) |
| 47 |
45
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc 𝑦 ) ) |
| 48 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
| 50 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 51 |
49 50
|
oveq12d |
⊢ ( 𝑤 = 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 52 |
46 47 51
|
f1oeq123d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 53 |
44 52
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) ) |
| 54 |
|
eleq1 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝑤 ∈ dom 𝐺 ↔ suc 𝑦 ∈ dom 𝐺 ) ) |
| 55 |
|
suceq |
⊢ ( 𝑤 = suc 𝑦 → suc 𝑤 = suc suc 𝑦 ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( 𝑇 ‘ suc 𝑤 ) = ( 𝑇 ‘ suc suc 𝑦 ) ) |
| 57 |
55
|
fveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐻 ‘ suc 𝑤 ) = ( 𝐻 ‘ suc suc 𝑦 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ suc 𝑦 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝑤 = suc 𝑦 → ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) = ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 60 |
|
2fveq3 |
⊢ ( 𝑤 = suc 𝑦 → ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 61 |
59 60
|
oveq12d |
⊢ ( 𝑤 = suc 𝑦 → ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) = ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 62 |
56 57 61
|
f1oeq123d |
⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ↔ ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) |
| 63 |
54 62
|
imbi12d |
⊢ ( 𝑤 = suc 𝑦 → ( ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ↔ ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 64 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐴 ∈ On ) |
| 65 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
| 66 |
|
simpr |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ dom 𝐺 ) |
| 67 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ω ∈ On ) |
| 68 |
|
suppssdm |
⊢ ( 𝐹 supp ∅ ) ⊆ dom 𝐹 |
| 69 |
1 12 2
|
cantnfs |
⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 70 |
18 69
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) |
| 71 |
70
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ω ) |
| 72 |
68 71
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 73 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
| 74 |
2 73
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ On ) |
| 75 |
72 74
|
sstrd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ⊆ On ) |
| 76 |
5
|
oif |
⊢ 𝐺 : dom 𝐺 ⟶ ( 𝐹 supp ∅ ) |
| 77 |
76
|
ffvelcdmi |
⊢ ( ∅ ∈ dom 𝐺 → ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) |
| 78 |
|
ssel2 |
⊢ ( ( ( 𝐹 supp ∅ ) ⊆ On ∧ ( 𝐺 ‘ ∅ ) ∈ ( 𝐹 supp ∅ ) ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 79 |
75 77 78
|
syl2an |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝐺 ‘ ∅ ) ∈ On ) |
| 80 |
|
peano1 |
⊢ ∅ ∈ ω |
| 81 |
80
|
a1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ω ) |
| 82 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ ∅ ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 83 |
67 79 81 82
|
syl21anc |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ ∅ ) ) ) |
| 84 |
|
0ex |
⊢ ∅ ∈ V |
| 85 |
7
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝑇 ‘ ∅ ) = ∅ ) |
| 86 |
84 85
|
ax-mp |
⊢ ( 𝑇 ‘ ∅ ) = ∅ |
| 87 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
| 88 |
6
|
seqom0g |
⊢ ( ∅ ∈ V → ( 𝐻 ‘ ∅ ) = ∅ ) |
| 89 |
|
f1oeq2 |
⊢ ( ( 𝐻 ‘ ∅ ) = ∅ → ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
| 90 |
84 88 89
|
mp2b |
⊢ ( ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
| 91 |
87 90
|
mpbir |
⊢ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ |
| 92 |
|
f1oeq1 |
⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ↔ ∅ : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) ) |
| 93 |
91 92
|
mpbiri |
⊢ ( ( 𝑇 ‘ ∅ ) = ∅ → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
| 94 |
86 93
|
mp1i |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ ∅ ) : ( 𝐻 ‘ ∅ ) –1-1-onto→ ∅ ) |
| 95 |
1 64 65 4 5 6 7 8 9 66 83 94
|
cnfcomlem |
⊢ ( ( 𝜑 ∧ ∅ ∈ dom 𝐺 ) → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) |
| 96 |
95
|
ex |
⊢ ( 𝜑 → ( ∅ ∈ dom 𝐺 → ( 𝑇 ‘ suc ∅ ) : ( 𝐻 ‘ suc ∅ ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ ∅ ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ ∅ ) ) ) ) ) |
| 97 |
5
|
oicl |
⊢ Ord dom 𝐺 |
| 98 |
|
ordtr |
⊢ ( Ord dom 𝐺 → Tr dom 𝐺 ) |
| 99 |
97 98
|
ax-mp |
⊢ Tr dom 𝐺 |
| 100 |
|
trsuc |
⊢ ( ( Tr dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) → 𝑦 ∈ dom 𝐺 ) |
| 101 |
99 100
|
mpan |
⊢ ( suc 𝑦 ∈ dom 𝐺 → 𝑦 ∈ dom 𝐺 ) |
| 102 |
101
|
imim1i |
⊢ ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 103 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ∈ On ) |
| 104 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐵 ∈ ( ω ↑o 𝐴 ) ) |
| 105 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc 𝑦 ∈ dom 𝐺 ) |
| 106 |
74
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐴 ⊆ On ) |
| 107 |
72
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 supp ∅ ) ⊆ 𝐴 ) |
| 108 |
76
|
ffvelcdmi |
⊢ ( suc 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 109 |
108
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 110 |
107 109
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ 𝐴 ) |
| 111 |
106 110
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ suc 𝑦 ) ∈ On ) |
| 112 |
|
eloni |
⊢ ( ( 𝐺 ‘ suc 𝑦 ) ∈ On → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 113 |
111 112
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → Ord ( 𝐺 ‘ suc 𝑦 ) ) |
| 114 |
|
vex |
⊢ 𝑦 ∈ V |
| 115 |
114
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
| 116 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 supp ∅ ) ∈ V ) |
| 117 |
19
|
simpld |
⊢ ( 𝜑 → E We ( 𝐹 supp ∅ ) ) |
| 118 |
5
|
oiiso |
⊢ ( ( ( 𝐹 supp ∅ ) ∈ V ∧ E We ( 𝐹 supp ∅ ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 119 |
116 117 118
|
syl2anc |
⊢ ( 𝜑 → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ) |
| 121 |
101
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝑦 ∈ dom 𝐺 ) |
| 122 |
|
isorel |
⊢ ( ( 𝐺 Isom E , E ( dom 𝐺 , ( 𝐹 supp ∅ ) ) ∧ ( 𝑦 ∈ dom 𝐺 ∧ suc 𝑦 ∈ dom 𝐺 ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 123 |
120 121 105 122
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 E suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 124 |
114
|
sucex |
⊢ suc 𝑦 ∈ V |
| 125 |
124
|
epeli |
⊢ ( 𝑦 E suc 𝑦 ↔ 𝑦 ∈ suc 𝑦 ) |
| 126 |
|
fvex |
⊢ ( 𝐺 ‘ suc 𝑦 ) ∈ V |
| 127 |
126
|
epeli |
⊢ ( ( 𝐺 ‘ 𝑦 ) E ( 𝐺 ‘ suc 𝑦 ) ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 128 |
123 125 127
|
3bitr3g |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑦 ∈ suc 𝑦 ↔ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 129 |
115 128
|
mpbii |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) ) |
| 130 |
|
ordsucss |
⊢ ( Ord ( 𝐺 ‘ suc 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐺 ‘ suc 𝑦 ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 131 |
113 129 130
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) ) |
| 132 |
76
|
ffvelcdmi |
⊢ ( 𝑦 ∈ dom 𝐺 → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 133 |
121 132
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝐹 supp ∅ ) ) |
| 134 |
107 133
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐴 ) |
| 135 |
106 134
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 136 |
|
onsuc |
⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ On → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 137 |
135 136
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → suc ( 𝐺 ‘ 𝑦 ) ∈ On ) |
| 138 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ω ∈ On ) |
| 139 |
80
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ω ) |
| 140 |
|
oewordi |
⊢ ( ( ( suc ( 𝐺 ‘ 𝑦 ) ∈ On ∧ ( 𝐺 ‘ suc 𝑦 ) ∈ On ∧ ω ∈ On ) ∧ ∅ ∈ ω ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 141 |
137 111 138 139 140
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( suc ( 𝐺 ‘ 𝑦 ) ⊆ ( 𝐺 ‘ suc 𝑦 ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 142 |
131 141
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ⊆ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 143 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → 𝐹 : 𝐴 ⟶ ω ) |
| 144 |
143 134
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ) |
| 145 |
|
nnon |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 146 |
144 145
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 147 |
|
oecl |
⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 148 |
138 135 147
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) |
| 149 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
| 150 |
138 135 139 149
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) |
| 151 |
|
omord2 |
⊢ ( ( ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ On ∧ ω ∈ On ∧ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ∈ On ) ∧ ∅ ∈ ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) |
| 152 |
146 138 148 150 151
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ∈ ω ↔ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) ) |
| 153 |
144 152
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
| 154 |
|
oesuc |
⊢ ( ( ω ∈ On ∧ ( 𝐺 ‘ 𝑦 ) ∈ On ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
| 155 |
138 135 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) = ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ω ) ) |
| 156 |
153 155
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o suc ( 𝐺 ‘ 𝑦 ) ) ) |
| 157 |
142 156
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ∈ ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ) |
| 158 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 159 |
1 103 104 4 5 6 7 8 9 105 157 158
|
cnfcomlem |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ω ) ∧ ( suc 𝑦 ∈ dom 𝐺 ∧ ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) |
| 160 |
159
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( suc 𝑦 ∈ dom 𝐺 → ( ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 161 |
160
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 162 |
102 161
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ω ) → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) |
| 163 |
162
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑦 ) : ( 𝐻 ‘ suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) → ( suc 𝑦 ∈ dom 𝐺 → ( 𝑇 ‘ suc suc 𝑦 ) : ( 𝐻 ‘ suc suc 𝑦 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ suc 𝑦 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ suc 𝑦 ) ) ) ) ) ) ) |
| 164 |
43 53 63 96 163
|
finds2 |
⊢ ( 𝑤 ∈ ω → ( 𝜑 → ( 𝑤 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝑤 ) : ( 𝐻 ‘ suc 𝑤 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝑤 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝑤 ) ) ) ) ) ) |
| 165 |
33 164
|
vtoclga |
⊢ ( 𝐼 ∈ ω → ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) ) |
| 166 |
22 165
|
mpcom |
⊢ ( 𝜑 → ( 𝐼 ∈ dom 𝐺 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) ) |
| 167 |
10 166
|
mpd |
⊢ ( 𝜑 → ( 𝑇 ‘ suc 𝐼 ) : ( 𝐻 ‘ suc 𝐼 ) –1-1-onto→ ( ( ω ↑o ( 𝐺 ‘ 𝐼 ) ) ·o ( 𝐹 ‘ ( 𝐺 ‘ 𝐼 ) ) ) ) |