| Step |
Hyp |
Ref |
Expression |
| 1 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 3 |
|
fclstop |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐽 ∈ Top ) |
| 5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 6 |
5
|
neisspw |
⊢ ( 𝐽 ∈ Top → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 ∪ 𝐽 ) |
| 7 |
4 6
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 ∪ 𝐽 ) |
| 8 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ∪ 𝐹 = 𝑋 ) |
| 9 |
5
|
fclsfil |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 10 |
|
filunibas |
⊢ ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∪ 𝐹 = ∪ 𝐽 ) |
| 12 |
8 11
|
sylan9req |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 13 |
12
|
pweqd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 14 |
7 13
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ 𝒫 𝑋 ) |
| 15 |
2 14
|
unssd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ) |
| 16 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 17 |
|
filn0 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 18 |
|
ssn0 |
⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) |
| 19 |
16 17 18
|
sylancr |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ) |
| 21 |
|
incom |
⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) |
| 22 |
|
fclsneii |
⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑥 ) ≠ ∅ ) |
| 23 |
21 22
|
eqnetrrid |
⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∧ 𝑥 ∈ 𝐹 ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 24 |
23
|
3com23 |
⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 25 |
24
|
3expb |
⊢ ( ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 26 |
25
|
adantll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) → ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 27 |
26
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) |
| 28 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 30 |
|
istopon |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) |
| 31 |
4 12 30
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 32 |
5
|
fclselbas |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ∪ 𝐽 ) |
| 34 |
33 12
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ 𝑋 ) |
| 35 |
34
|
snssd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → { 𝐴 } ⊆ 𝑋 ) |
| 36 |
|
snnzg |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → { 𝐴 } ≠ ∅ ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → { 𝐴 } ≠ ∅ ) |
| 38 |
|
neifil |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ { 𝐴 } ⊆ 𝑋 ∧ { 𝐴 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 39 |
31 35 37 38
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) ) |
| 40 |
|
filfbas |
⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( Fil ‘ 𝑋 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) |
| 42 |
|
fbunfip |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 43 |
29 41 42
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ( 𝑥 ∩ 𝑦 ) ≠ ∅ ) ) |
| 44 |
27 43
|
mpbird |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 45 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 46 |
|
fsubbas |
⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 47 |
45 46
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 49 |
15 20 44 48
|
mpbir3and |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 50 |
|
fgcl |
⊢ ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 52 |
|
fvex |
⊢ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ V |
| 53 |
|
unexg |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∈ V ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V ) |
| 54 |
52 53
|
mpan2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V ) |
| 55 |
|
ssfii |
⊢ ( ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ∈ V → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 56 |
54 55
|
syl |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 57 |
56
|
adantr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 58 |
57
|
unssad |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 59 |
|
ssfg |
⊢ ( ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 60 |
49 59
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 61 |
58 60
|
sstrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 62 |
57
|
unssbd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 63 |
62 60
|
sstrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) |
| 64 |
|
elflim |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) |
| 65 |
31 51 64
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) |
| 66 |
34 63 65
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 67 |
|
sseq2 |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐽 fLim 𝑔 ) = ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) |
| 69 |
68
|
eleq2d |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) |
| 70 |
67 69
|
anbi12d |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) → ( ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ↔ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∧ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) ) |
| 71 |
70
|
rspcev |
⊢ ( ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ∧ 𝐴 ∈ ( 𝐽 fLim ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) ) ) ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) |
| 72 |
51 61 66 71
|
syl12anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) |
| 73 |
72
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) |
| 74 |
|
simprl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 75 |
|
simprrr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) |
| 76 |
|
flimtopon |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝑔 ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ) |
| 78 |
74 77
|
mpbird |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 79 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 80 |
|
simprrl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐹 ⊆ 𝑔 ) |
| 81 |
|
fclsss2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fClus 𝑔 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| 82 |
78 79 80 81
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → ( 𝐽 fClus 𝑔 ) ⊆ ( 𝐽 fClus 𝐹 ) ) |
| 83 |
|
flimfcls |
⊢ ( 𝐽 fLim 𝑔 ) ⊆ ( 𝐽 fClus 𝑔 ) |
| 84 |
83 75
|
sselid |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) |
| 85 |
82 84
|
sseldd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) |
| 86 |
85
|
rexlimdvaa |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 87 |
73 86
|
impbid |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∃ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 ∧ 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) ) ) |