| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimfnfcls.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
flimfcls |
⊢ ( 𝐽 fLim 𝑔 ) ⊆ ( 𝐽 fClus 𝑔 ) |
| 3 |
|
flimtop |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) |
| 4 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 7 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝑔 ∈ ( Fil ‘ 𝑋 ) ) |
| 8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐹 ⊆ 𝑔 ) |
| 9 |
|
flimss2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝑔 ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → ( 𝐽 fLim 𝐹 ) ⊆ ( 𝐽 fLim 𝑔 ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) |
| 12 |
10 11
|
sseldd |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fLim 𝑔 ) ) |
| 13 |
2 12
|
sselid |
⊢ ( ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝐹 ⊆ 𝑔 ) → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) |
| 14 |
13
|
ex |
⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑔 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 16 |
|
sseq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ 𝐹 ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝐽 fClus 𝑔 ) = ( 𝐽 fClus 𝐹 ) ) |
| 18 |
17
|
eleq2d |
⊢ ( 𝑔 = 𝐹 → ( 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ↔ ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 20 |
19
|
rspcv |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) ) |
| 21 |
|
ssid |
⊢ 𝐹 ⊆ 𝐹 |
| 22 |
|
id |
⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) ) |
| 23 |
21 22
|
mpi |
⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) |
| 24 |
|
fclstop |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐽 ∈ Top ) |
| 25 |
1
|
fclselbas |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → 𝐴 ∈ 𝑋 ) |
| 26 |
24 25
|
jca |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) |
| 27 |
23 26
|
syl |
⊢ ( ( 𝐹 ⊆ 𝐹 → 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) |
| 28 |
20 27
|
syl6 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ) |
| 29 |
|
disjdif |
⊢ ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ |
| 30 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 31 |
|
simplrl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐽 ∈ Top ) |
| 32 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 33 |
31 32
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑋 ∈ 𝐽 ) |
| 34 |
|
pwexg |
⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) |
| 35 |
|
rabexg |
⊢ ( 𝒫 𝑋 ∈ V → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) |
| 36 |
33 34 35
|
3syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) |
| 37 |
|
unexg |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ V ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V ) |
| 38 |
30 36 37
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V ) |
| 39 |
|
ssfii |
⊢ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ∈ V → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) |
| 41 |
|
filsspw |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 42 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ 𝒫 𝑋 |
| 43 |
42
|
a1i |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ 𝒫 𝑋 ) |
| 44 |
41 43
|
unssd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 46 |
|
ssun2 |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ⊆ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) |
| 47 |
|
sseq2 |
⊢ ( 𝑥 = ( 𝑋 ∖ 𝑜 ) → ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) ) ) |
| 48 |
|
difss |
⊢ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 |
| 49 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) ) |
| 50 |
33 49
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) ) |
| 51 |
48 50
|
mpbiri |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ 𝒫 𝑋 ) |
| 52 |
|
ssid |
⊢ ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) |
| 53 |
52
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ ( 𝑋 ∖ 𝑜 ) ) |
| 54 |
47 51 53
|
elrabd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) |
| 55 |
46 54
|
sselid |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) |
| 56 |
55
|
ne0d |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ) |
| 57 |
|
sseq2 |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 ↔ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) ) |
| 58 |
57
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ↔ ( 𝑧 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) ) |
| 59 |
58
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) |
| 60 |
59
|
ad2antll |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 ) |
| 61 |
|
sslin |
⊢ ( ( 𝑋 ∖ 𝑜 ) ⊆ 𝑧 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 62 |
60 61
|
syl |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ) |
| 63 |
|
simprrr |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ 𝑜 ∈ 𝐹 ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ¬ 𝑜 ∈ 𝐹 ) |
| 65 |
|
inssdif0 |
⊢ ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 ↔ ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ ) |
| 66 |
|
simplll |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 67 |
|
simprl |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) |
| 68 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) |
| 69 |
66 67 68
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → 𝑦 ⊆ 𝑋 ) |
| 70 |
|
dfss2 |
⊢ ( 𝑦 ⊆ 𝑋 ↔ ( 𝑦 ∩ 𝑋 ) = 𝑦 ) |
| 71 |
69 70
|
sylib |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ 𝑋 ) = 𝑦 ) |
| 72 |
71
|
sseq1d |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 ↔ 𝑦 ⊆ 𝑜 ) ) |
| 73 |
30
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 74 |
|
simplrl |
⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑦 ∈ 𝐹 ) |
| 75 |
|
elssuni |
⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ ∪ 𝐽 ) |
| 76 |
75 1
|
sseqtrrdi |
⊢ ( 𝑜 ∈ 𝐽 → 𝑜 ⊆ 𝑋 ) |
| 77 |
76
|
ad2antrl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑜 ⊆ 𝑋 ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑜 ⊆ 𝑋 ) |
| 79 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑦 ⊆ 𝑜 ) |
| 80 |
|
filss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑜 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑜 ) ) → 𝑜 ∈ 𝐹 ) |
| 81 |
73 74 78 79 80
|
syl13anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∧ 𝑦 ⊆ 𝑜 ) → 𝑜 ∈ 𝐹 ) |
| 82 |
81
|
ex |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ⊆ 𝑜 → 𝑜 ∈ 𝐹 ) ) |
| 83 |
72 82
|
sylbid |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ 𝑋 ) ⊆ 𝑜 → 𝑜 ∈ 𝐹 ) ) |
| 84 |
65 83
|
biimtrrid |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ → 𝑜 ∈ 𝐹 ) ) |
| 85 |
84
|
necon3bd |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( ¬ 𝑜 ∈ 𝐹 → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 86 |
64 85
|
mpd |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) |
| 87 |
|
ssn0 |
⊢ ( ( ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ⊆ ( 𝑦 ∩ 𝑧 ) ∧ ( 𝑦 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 88 |
62 86 87
|
syl2anc |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) → ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 89 |
88
|
ralrimivva |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) |
| 90 |
|
filfbas |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 91 |
30 90
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 92 |
48
|
a1i |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ) |
| 93 |
|
filtop |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐹 ) |
| 94 |
30 93
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑋 ∈ 𝐹 ) |
| 95 |
|
eleq1 |
⊢ ( 𝑜 = 𝑋 → ( 𝑜 ∈ 𝐹 ↔ 𝑋 ∈ 𝐹 ) ) |
| 96 |
94 95
|
syl5ibrcom |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑜 = 𝑋 → 𝑜 ∈ 𝐹 ) ) |
| 97 |
96
|
necon3bd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ¬ 𝑜 ∈ 𝐹 → 𝑜 ≠ 𝑋 ) ) |
| 98 |
63 97
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝑜 ≠ 𝑋 ) |
| 99 |
|
pssdifn0 |
⊢ ( ( 𝑜 ⊆ 𝑋 ∧ 𝑜 ≠ 𝑋 ) → ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) |
| 100 |
77 98 99
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) |
| 101 |
|
supfil |
⊢ ( ( 𝑋 ∈ 𝐽 ∧ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑜 ) ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 102 |
33 92 100 101
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) ) |
| 103 |
|
filfbas |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( Fil ‘ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |
| 104 |
102 103
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) |
| 105 |
|
fbunfip |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ∈ ( fBas ‘ 𝑋 ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 106 |
91 104 105
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ↔ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ( 𝑦 ∩ 𝑧 ) ≠ ∅ ) ) |
| 107 |
89 106
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) |
| 108 |
|
fsubbas |
⊢ ( 𝑋 ∈ 𝐹 → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 109 |
94 108
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ 𝒫 𝑋 ∧ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ≠ ∅ ∧ ¬ ∅ ∈ ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 110 |
45 56 107 109
|
mpbir3and |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) ) |
| 111 |
|
ssfg |
⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 112 |
110 111
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 113 |
40 112
|
sstrd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 114 |
113
|
unssad |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 115 |
|
fgcl |
⊢ ( ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ∈ ( fBas ‘ 𝑋 ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 116 |
110 115
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) ) |
| 117 |
|
sseq2 |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐹 ⊆ 𝑔 ↔ 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 118 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐽 fClus 𝑔 ) = ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 119 |
118
|
eleq2d |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ↔ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) |
| 120 |
117 119
|
imbi12d |
⊢ ( 𝑔 = ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → ( ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ↔ ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 121 |
120
|
rspcv |
⊢ ( ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 122 |
116 121
|
syl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐹 ⊆ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) ) |
| 123 |
114 122
|
mpid |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) ) |
| 124 |
|
simpr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) |
| 125 |
|
simplrl |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝑜 ∈ 𝐽 ) |
| 126 |
|
simprrl |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → 𝐴 ∈ 𝑜 ) |
| 127 |
126
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → 𝐴 ∈ 𝑜 ) |
| 128 |
113 55
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) |
| 130 |
|
fclsopni |
⊢ ( ( 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝐴 ∈ 𝑜 ∧ ( 𝑋 ∖ 𝑜 ) ∈ ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) |
| 131 |
124 125 127 129 130
|
syl13anc |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) ∧ 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) |
| 132 |
131
|
ex |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( 𝐴 ∈ ( 𝐽 fClus ( 𝑋 filGen ( fi ‘ ( 𝐹 ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑜 ) ⊆ 𝑥 } ) ) ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 133 |
123 132
|
syld |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) ≠ ∅ ) ) |
| 134 |
133
|
necon2bd |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ( ( 𝑜 ∩ ( 𝑋 ∖ 𝑜 ) ) = ∅ → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |
| 135 |
29 134
|
mpi |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) ) → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 136 |
135
|
anassrs |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ ( 𝐴 ∈ 𝑜 ∧ ¬ 𝑜 ∈ 𝐹 ) ) → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) |
| 137 |
136
|
expr |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝐴 ∈ 𝑜 ) → ( ¬ 𝑜 ∈ 𝐹 → ¬ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |
| 138 |
137
|
con4d |
⊢ ( ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) ∧ 𝐴 ∈ 𝑜 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝑜 ∈ 𝐹 ) ) |
| 139 |
138
|
ex |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑜 → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝑜 ∈ 𝐹 ) ) ) |
| 140 |
139
|
com23 |
⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) |
| 141 |
140
|
ralrimdva |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) |
| 142 |
|
simprr |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
| 143 |
141 142
|
jctild |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) |
| 144 |
|
simprl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐽 ∈ Top ) |
| 145 |
144 4
|
sylib |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 146 |
|
simpl |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 147 |
|
flimopn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) |
| 148 |
145 146 147
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑜 ∈ 𝐹 ) ) ) ) |
| 149 |
143 148
|
sylibrd |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 150 |
149
|
ex |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) ) |
| 151 |
150
|
com23 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) ) |
| 152 |
28 151
|
mpdd |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ) |
| 153 |
15 152
|
impbid2 |
⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑔 ∈ ( Fil ‘ 𝑋 ) ( 𝐹 ⊆ 𝑔 → 𝐴 ∈ ( 𝐽 fClus 𝑔 ) ) ) ) |