Step |
Hyp |
Ref |
Expression |
1 |
|
fpwrelmap.1 |
⊢ 𝐴 ∈ V |
2 |
|
fpwrelmap.2 |
⊢ 𝐵 ∈ V |
3 |
|
fpwrelmap.3 |
⊢ 𝑀 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
4 |
1
|
a1i |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝐴 ∈ V ) |
5 |
|
simpr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) |
6 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
7 |
6
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
9 |
|
elelpwi |
⊢ ( ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) → 𝑦 ∈ 𝐵 ) |
10 |
5 8 9
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
11 |
10
|
ex |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
12 |
11
|
alrimiv |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
13 |
|
abss |
⊢ ( { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
14 |
2
|
ssex |
⊢ ( { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ⊆ 𝐵 → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ V ) |
15 |
13 14
|
sylbir |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ V ) |
16 |
12 15
|
syl |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ V ) |
17 |
4 16
|
opabex3d |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ∈ V ) |
18 |
17
|
adantl |
⊢ ( ( ⊤ ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ∈ V ) |
19 |
1
|
mptex |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ V |
20 |
19
|
a1i |
⊢ ( ( ⊤ ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ V ) |
21 |
11
|
imdistanda |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
22 |
21
|
ssopab2dv |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
23 |
22
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
24 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
25 |
|
df-xp |
⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
26 |
25
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
27 |
23 24 26
|
3sstr4d |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
28 |
|
velpw |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
30 |
6
|
feqmptd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
32 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) |
33 |
|
nfopab1 |
⊢ Ⅎ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
34 |
33
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
35 |
32 34
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
36 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } |
37 |
36
|
a1i |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } ) |
38 |
|
nfv |
⊢ Ⅎ 𝑦 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) |
39 |
|
nfopab2 |
⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
40 |
39
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
41 |
38 40
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
42 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
43 |
41 42
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) |
44 |
10
|
adantllr |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
45 |
|
df-br |
⊢ ( 𝑥 𝑟 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) |
46 |
|
eleq2 |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
47 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
48 |
46 47
|
bitrdi |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
49 |
45 48
|
syl5bb |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
51 |
|
elfvdm |
⊢ ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ dom 𝑓 ) |
52 |
51
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 ∈ dom 𝑓 ) |
53 |
6
|
fdmd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → dom 𝑓 = 𝐴 ) |
54 |
53
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → dom 𝑓 = 𝐴 ) |
55 |
52 54
|
eleqtrd |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
56 |
55
|
ex |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ 𝐴 ) ) |
57 |
56
|
pm4.71rd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
59 |
50 58
|
bitr4d |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 ↔ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
60 |
59
|
biimpar |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) |
61 |
44 60
|
jca |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) |
62 |
61
|
ex |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
63 |
59
|
biimpd |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
64 |
63
|
adantld |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
65 |
62 64
|
impbid |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
66 |
43 65
|
abbid |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } ) |
67 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) |
68 |
67
|
a1i |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) ) |
69 |
37 66 68
|
3eqtr2rd |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
70 |
35 69
|
mpteq2da |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
71 |
31 70
|
eqtrd |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
72 |
29 71
|
jca |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
73 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ⊆ 𝐵 |
74 |
2 73
|
elpwi2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 |
75 |
74
|
a1i |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 ) |
76 |
75
|
fmpttd |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) |
77 |
76
|
adantr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) |
78 |
|
simpr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
79 |
78
|
feq1d |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) ) |
80 |
77 79
|
mpbird |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
81 |
2
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
82 |
81 1
|
elmap |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
83 |
80 82
|
sylibr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
84 |
|
elpwi |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
85 |
84
|
adantr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
86 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
87 |
85 86
|
sstrdi |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( V × V ) ) |
88 |
|
df-rel |
⊢ ( Rel 𝑟 ↔ 𝑟 ⊆ ( V × V ) ) |
89 |
87 88
|
sylibr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel 𝑟 ) |
90 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
91 |
90
|
a1i |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
92 |
|
id |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
93 |
|
nfv |
⊢ Ⅎ 𝑥 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) |
94 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
95 |
94
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
96 |
93 95
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
97 |
|
nfv |
⊢ Ⅎ 𝑦 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) |
98 |
42
|
nfci |
⊢ Ⅎ 𝑦 𝐴 |
99 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } |
100 |
98 99
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
101 |
100
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
102 |
97 101
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
103 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑟 |
104 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑟 |
105 |
|
brelg |
⊢ ( ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
106 |
84 105
|
sylan |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
107 |
106
|
adantlr |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
108 |
107
|
simpld |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑥 ∈ 𝐴 ) |
109 |
107
|
simprd |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ 𝐵 ) |
110 |
|
simpr |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑥 𝑟 𝑦 ) |
111 |
78
|
fveq1d |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) ) |
112 |
2
|
rabex |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V |
113 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
114 |
113
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
115 |
112 114
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
116 |
111 115
|
sylan9eq |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
117 |
116
|
eleq2d |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
118 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) |
119 |
117 118
|
bitrdi |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
120 |
108 119
|
syldan |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
121 |
109 110 120
|
mpbir2and |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) |
122 |
108 121
|
jca |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
123 |
122
|
ex |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 𝑟 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
124 |
119
|
simplbda |
⊢ ( ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) |
125 |
124
|
expl |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) ) |
126 |
123 125
|
impbid |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
127 |
45 126
|
bitr3id |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
128 |
127 47
|
bitr4di |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
129 |
96 102 103 104 33 39 128
|
eqrelrd2 |
⊢ ( ( ( Rel 𝑟 ∧ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
130 |
89 91 92 129
|
syl21anc |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
131 |
83 130
|
jca |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
132 |
72 131
|
impbii |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ↔ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
133 |
132
|
a1i |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ↔ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) ) |
134 |
3 18 20 133
|
f1od |
⊢ ( ⊤ → 𝑀 : ( 𝒫 𝐵 ↑m 𝐴 ) –1-1-onto→ 𝒫 ( 𝐴 × 𝐵 ) ) |
135 |
134
|
mptru |
⊢ 𝑀 : ( 𝒫 𝐵 ↑m 𝐴 ) –1-1-onto→ 𝒫 ( 𝐴 × 𝐵 ) |