| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwrelmap.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
fpwrelmap.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
fpwrelmap.3 |
⊢ 𝑀 = ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 4 |
1
|
a1i |
⊢ ( ⊤ → 𝐴 ∈ V ) |
| 5 |
|
abid2 |
⊢ { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) |
| 6 |
5
|
fvexi |
⊢ { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ V |
| 7 |
6
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } ∈ V ) |
| 8 |
4 7
|
opabex3d |
⊢ ( ⊤ → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ∈ V ) |
| 9 |
8
|
adantr |
⊢ ( ( ⊤ ∧ 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ∈ V ) |
| 10 |
1
|
mptex |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ V |
| 11 |
10
|
a1i |
⊢ ( ( ⊤ ∧ 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ∈ V ) |
| 12 |
|
simpr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 13 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
| 14 |
13
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) |
| 16 |
|
elelpwi |
⊢ ( ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝒫 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 17 |
12 15 16
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 18 |
17
|
ex |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑦 ∈ 𝐵 ) ) |
| 19 |
18
|
imdistanda |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 20 |
19
|
ssopab2dv |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 22 |
|
simpr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 23 |
|
df-xp |
⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } |
| 24 |
23
|
a1i |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝐴 × 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) } ) |
| 25 |
21 22 24
|
3sstr4d |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
| 26 |
|
velpw |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ↔ 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
| 27 |
25 26
|
sylibr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) |
| 28 |
13
|
feqmptd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
| 30 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) |
| 31 |
|
nfopab1 |
⊢ Ⅎ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
| 32 |
31
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
| 33 |
30 32
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 34 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } |
| 35 |
34
|
a1i |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } ) |
| 36 |
|
nfv |
⊢ Ⅎ 𝑦 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) |
| 37 |
|
nfopab2 |
⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
| 38 |
37
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
| 39 |
36 38
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 40 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 41 |
39 40
|
nfan |
⊢ Ⅎ 𝑦 ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) |
| 42 |
17
|
adantllr |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑦 ∈ 𝐵 ) |
| 43 |
|
df-br |
⊢ ( 𝑥 𝑟 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ) |
| 44 |
|
eleq2 |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
| 45 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 46 |
44 45
|
bitrdi |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 47 |
43 46
|
bitrid |
⊢ ( 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 48 |
47
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 49 |
|
elfvdm |
⊢ ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ dom 𝑓 ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 ∈ dom 𝑓 ) |
| 51 |
13
|
fdmd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → dom 𝑓 = 𝐴 ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → dom 𝑓 = 𝐴 ) |
| 53 |
50 52
|
eleqtrd |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 ∈ 𝐴 ) |
| 54 |
53
|
ex |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ 𝐴 ) ) |
| 55 |
54
|
pm4.71rd |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 57 |
48 56
|
bitr4d |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 ↔ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 58 |
57
|
biimpar |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) |
| 59 |
42 58
|
jca |
⊢ ( ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) |
| 60 |
59
|
ex |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
| 61 |
57
|
biimpd |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑟 𝑦 → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 62 |
61
|
adantld |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 63 |
60 62
|
impbid |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
| 64 |
41 63
|
abbid |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) } ) |
| 65 |
5
|
a1i |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∣ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) ) |
| 66 |
35 64 65
|
3eqtr2rd |
⊢ ( ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 67 |
33 66
|
mpteq2da |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 68 |
29 67
|
eqtrd |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 69 |
27 68
|
jca |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
| 70 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ⊆ 𝐵 |
| 71 |
2 70
|
elpwi2 |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 |
| 72 |
71
|
a1i |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ 𝒫 𝐵 ) |
| 73 |
72
|
fmpttd |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) |
| 75 |
|
simpr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 76 |
75
|
feq1d |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) : 𝐴 ⟶ 𝒫 𝐵 ) ) |
| 77 |
74 76
|
mpbird |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
| 78 |
2
|
pwex |
⊢ 𝒫 𝐵 ∈ V |
| 79 |
78 1
|
elmap |
⊢ ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝒫 𝐵 ) |
| 80 |
77 79
|
sylibr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ) |
| 81 |
|
elpwi |
⊢ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( 𝐴 × 𝐵 ) ) |
| 83 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
| 84 |
82 83
|
sstrdi |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 ⊆ ( V × V ) ) |
| 85 |
|
df-rel |
⊢ ( Rel 𝑟 ↔ 𝑟 ⊆ ( V × V ) ) |
| 86 |
84 85
|
sylibr |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel 𝑟 ) |
| 87 |
|
relopabv |
⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } |
| 88 |
87
|
a1i |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 89 |
|
id |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
| 90 |
|
nfv |
⊢ Ⅎ 𝑥 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) |
| 91 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 92 |
91
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 93 |
90 92
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 94 |
|
nfv |
⊢ Ⅎ 𝑦 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) |
| 95 |
40
|
nfci |
⊢ Ⅎ 𝑦 𝐴 |
| 96 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } |
| 97 |
95 96
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 98 |
97
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 99 |
94 98
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 100 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑟 |
| 101 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑟 |
| 102 |
|
brelg |
⊢ ( ( 𝑟 ⊆ ( 𝐴 × 𝐵 ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 103 |
81 102
|
sylan |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 104 |
103
|
adantlr |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 105 |
104
|
simpld |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑥 ∈ 𝐴 ) |
| 106 |
104
|
simprd |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 107 |
|
simpr |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑥 𝑟 𝑦 ) |
| 108 |
75
|
fveq1d |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) ) |
| 109 |
2
|
rabex |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V |
| 110 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 111 |
110
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 112 |
109 111
|
mpan2 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 113 |
108 112
|
sylan9eq |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) = { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) |
| 114 |
113
|
eleq2d |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) |
| 115 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) |
| 116 |
114 115
|
bitrdi |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
| 117 |
105 116
|
syldan |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝑟 𝑦 ) ) ) |
| 118 |
106 107 117
|
mpbir2and |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) |
| 119 |
105 118
|
jca |
⊢ ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 𝑟 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
| 120 |
119
|
ex |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 𝑟 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 121 |
116
|
simplbda |
⊢ ( ( ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) |
| 122 |
121
|
expl |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝑥 𝑟 𝑦 ) ) |
| 123 |
120 122
|
impbid |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑥 𝑟 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 124 |
43 123
|
bitr3id |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 125 |
124 45
|
bitr4di |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝑟 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
| 126 |
93 99 100 101 31 37 125
|
eqrelrd2 |
⊢ ( ( ( Rel 𝑟 ∧ Rel { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ∧ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 127 |
86 88 89 126
|
syl21anc |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) |
| 128 |
80 127
|
jca |
⊢ ( ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) → ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ) |
| 129 |
69 128
|
impbii |
⊢ ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ↔ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) |
| 130 |
129
|
a1i |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( 𝒫 𝐵 ↑m 𝐴 ) ∧ 𝑟 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑥 ) ) } ) ↔ ( 𝑟 ∈ 𝒫 ( 𝐴 × 𝐵 ) ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ { 𝑦 ∈ 𝐵 ∣ 𝑥 𝑟 𝑦 } ) ) ) ) |
| 131 |
3 9 11 130
|
f1od |
⊢ ( ⊤ → 𝑀 : ( 𝒫 𝐵 ↑m 𝐴 ) –1-1-onto→ 𝒫 ( 𝐴 × 𝐵 ) ) |
| 132 |
131
|
mptru |
⊢ 𝑀 : ( 𝒫 𝐵 ↑m 𝐴 ) –1-1-onto→ 𝒫 ( 𝐴 × 𝐵 ) |