Metamath Proof Explorer


Theorem grimuhgr

Description: If there is a graph isomorphism between a hypergraph and a class with an edge function, the class is also a hypergraph. (Contributed by AV, 2-May-2025)

Ref Expression
Assertion grimuhgr ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → 𝑇 ∈ UHGraph )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 )
2 eqid ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 )
3 eqid ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 )
4 eqid ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 )
5 1 2 3 4 grimprop ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) )
6 fdmrn ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) )
7 6 biimpi ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) )
8 7 3ad2ant3 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) )
9 8 adantr ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) )
10 funfn ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) )
11 10 biimpi ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) )
12 11 3ad2ant3 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) )
13 f1ofo ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) )
14 13 3ad2ant2 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) )
15 14 3ad2ant1 ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) )
16 foelcdmi ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗𝑦 ) = 𝑥 )
17 15 16 sylan ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗𝑦 ) = 𝑥 )
18 17 ex ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗𝑦 ) = 𝑥 ) )
19 2fveq3 ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) )
20 fveq2 ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) )
21 20 imaeq2d ( 𝑖 = 𝑦 → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) )
22 19 21 eqeq12d ( 𝑖 = 𝑦 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) )
23 22 rspcv ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) )
24 23 adantl ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) )
25 f1ofun ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → Fun 𝐹 )
26 25 3ad2ant1 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → Fun 𝐹 )
27 26 adantr ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → Fun 𝐹 )
28 fvex ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V
29 28 a1i ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V )
30 funimaexg ( ( Fun 𝐹 ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V )
31 27 29 30 syl2an2r ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V )
32 f1of ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → 𝐹 : ( Vtx ‘ 𝑆 ) ⟶ ( Vtx ‘ 𝑇 ) )
33 32 fimassd ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) )
34 33 3ad2ant1 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) )
35 34 adantr ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) )
36 35 adantr ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) )
37 31 36 elpwd ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) )
38 f1odm ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) )
39 38 adantr ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) )
40 39 adantr ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) )
41 40 ineq1d ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) )
42 ffvelcdm ( ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) )
43 42 ex ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) )
44 43 adantl ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) )
45 eldifsn ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) )
46 28 elpw ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) )
47 45 46 bianbi ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) )
48 sseqin2 ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ↔ ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) )
49 48 biimpi ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) )
50 49 adantr ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) )
51 simpr ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ )
52 50 51 eqnetrd ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ )
53 52 a1i ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
54 47 53 biimtrid ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
55 44 54 syld ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
56 55 imp ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ )
57 41 56 eqnetrd ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ )
58 57 ex ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
59 58 3adant2 ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
60 59 adantr ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
61 60 imp ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ )
62 61 imadisjlnd ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ )
63 eldifsn ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) ∧ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) )
64 37 62 63 sylanbrc ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
65 64 adantr ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
66 eleq1 ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
67 66 adantl ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
68 65 67 mpbird ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
69 fveq2 ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) )
70 69 eleq1d ( ( 𝑗𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
71 68 70 syl5ibcom ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
72 71 ex ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
73 24 72 syld ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
74 73 ex ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) )
75 74 com23 ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) )
76 75 ex ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) )
77 76 3imp ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
78 77 rexlimdv ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
79 18 78 syld ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
80 79 ralrimiv ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
81 80 3exp ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
82 81 3exp ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) )
83 82 com35 ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) )
84 83 impd ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) )
85 84 3imp ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
86 85 imp ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
87 fnfvrnss ( ( ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
88 12 86 87 syl2an2r ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
89 9 88 fssd ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) )
90 89 ex ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
91 90 3exp ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) )
92 91 exlimdv ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) )
93 92 imp ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
94 5 93 syl ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
95 94 impcom ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
96 grimdmrel Rel dom GraphIso
97 96 ovrcl ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) )
98 1 3 isuhgr ( 𝑆 ∈ V → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) )
99 98 adantr ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) )
100 2 4 isuhgr ( 𝑇 ∈ V → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
101 100 adantl ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) )
102 99 101 imbi12d ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
103 97 102 syl ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
104 103 adantl ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) )
105 95 104 mpbird ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) )
106 105 ex ( Fun ( iEdg ‘ 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ) )
107 106 3imp31 ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → 𝑇 ∈ UHGraph )