Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝑇 ) = ( Vtx ‘ 𝑇 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝑇 ) = ( iEdg ‘ 𝑇 ) |
5 |
1 2 3 4
|
grimprop |
⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) ) |
6 |
|
fdmrn |
⊢ ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
7 |
6
|
biimpi |
⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ran ( iEdg ‘ 𝑇 ) ) |
10 |
|
funfn |
⊢ ( Fun ( iEdg ‘ 𝑇 ) ↔ ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) |
11 |
10
|
biimpi |
⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ) |
13 |
|
f1ofo |
⊢ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ) |
16 |
|
foelcdmi |
⊢ ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –onto→ dom ( iEdg ‘ 𝑇 ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) |
17 |
15 16
|
sylan |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) |
18 |
17
|
ex |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 ) ) |
19 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ) |
20 |
|
fveq2 |
⊢ ( 𝑖 = 𝑦 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
21 |
20
|
imaeq2d |
⊢ ( 𝑖 = 𝑦 → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑖 = 𝑦 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
23 |
22
|
rspcv |
⊢ ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
24 |
23
|
adantl |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) ) |
25 |
|
f1ofun |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → Fun 𝐹 ) |
26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → Fun 𝐹 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → Fun 𝐹 ) |
28 |
|
fvex |
⊢ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V |
29 |
28
|
a1i |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V ) |
30 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ V ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V ) |
31 |
27 29 30
|
syl2an2r |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ V ) |
32 |
|
f1of |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → 𝐹 : ( Vtx ‘ 𝑆 ) ⟶ ( Vtx ‘ 𝑇 ) ) |
33 |
32
|
fimassd |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ⊆ ( Vtx ‘ 𝑇 ) ) |
37 |
31 36
|
elpwd |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) ) |
38 |
|
f1odm |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → dom 𝐹 = ( Vtx ‘ 𝑆 ) ) |
41 |
40
|
ineq1d |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) |
42 |
|
ffvelcdm |
⊢ ( ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
43 |
42
|
ex |
⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
45 |
|
eldifsn |
⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) ) |
46 |
28
|
elpw |
⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ 𝒫 ( Vtx ‘ 𝑆 ) ↔ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ) |
47 |
45 46
|
bianbi |
⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) ) |
48 |
|
sseqin2 |
⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ↔ ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
49 |
48
|
biimpi |
⊢ ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) |
51 |
|
simpr |
⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) |
52 |
50 51
|
eqnetrd |
⊢ ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
53 |
52
|
a1i |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ⊆ ( Vtx ‘ 𝑆 ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ≠ ∅ ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
54 |
47 53
|
biimtrid |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
55 |
44 54
|
syld |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
56 |
55
|
imp |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( Vtx ‘ 𝑆 ) ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
57 |
41 56
|
eqnetrd |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
58 |
57
|
ex |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
59 |
58
|
3adant2 |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
61 |
60
|
imp |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( dom 𝐹 ∩ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
62 |
61
|
imadisjlnd |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) |
63 |
|
eldifsn |
⊢ ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ 𝒫 ( Vtx ‘ 𝑇 ) ∧ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ≠ ∅ ) ) |
64 |
37 62 63
|
sylanbrc |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
65 |
64
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
66 |
|
eleq1 |
⊢ ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
67 |
66
|
adantl |
⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
68 |
65 67
|
mpbird |
⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
69 |
|
fveq2 |
⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ) |
70 |
69
|
eleq1d |
⊢ ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
71 |
68 70
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) ∧ ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
72 |
71
|
ex |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑦 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑦 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
73 |
24 72
|
syld |
⊢ ( ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
74 |
73
|
ex |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
75 |
74
|
com23 |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
76 |
75
|
ex |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
77 |
76
|
3imp |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) → ( ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
78 |
77
|
rexlimdv |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( ∃ 𝑦 ∈ dom ( iEdg ‘ 𝑆 ) ( 𝑗 ‘ 𝑦 ) = 𝑥 → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
79 |
18 78
|
syld |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
80 |
79
|
ralrimiv |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
81 |
80
|
3exp |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
82 |
81
|
3exp |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
83 |
82
|
com35 |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) ) |
84 |
83
|
impd |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
85 |
84
|
3imp |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
86 |
85
|
imp |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
87 |
|
fnfvrnss |
⊢ ( ( ( iEdg ‘ 𝑇 ) Fn dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑇 ) ( ( iEdg ‘ 𝑇 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
88 |
12 86 87
|
syl2an2r |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑇 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
89 |
9 88
|
fssd |
⊢ ( ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) ∧ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) |
90 |
89
|
ex |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
91 |
90
|
3exp |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
92 |
91
|
exlimdv |
⊢ ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) → ( ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) ) |
93 |
92
|
imp |
⊢ ( ( 𝐹 : ( Vtx ‘ 𝑆 ) –1-1-onto→ ( Vtx ‘ 𝑇 ) ∧ ∃ 𝑗 ( 𝑗 : dom ( iEdg ‘ 𝑆 ) –1-1-onto→ dom ( iEdg ‘ 𝑇 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑇 ) ‘ ( 𝑗 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝑆 ) ‘ 𝑖 ) ) ) ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
94 |
5 93
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( Fun ( iEdg ‘ 𝑇 ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
95 |
94
|
impcom |
⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
96 |
|
grimdmrel |
⊢ Rel dom GraphIso |
97 |
96
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
98 |
1 3
|
isuhgr |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
99 |
98
|
adantr |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
100 |
2 4
|
isuhgr |
⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
101 |
100
|
adantl |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑇 ∈ UHGraph ↔ ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) |
102 |
99 101
|
imbi12d |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
103 |
97 102
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
104 |
103
|
adantl |
⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) → ( iEdg ‘ 𝑇 ) : dom ( iEdg ‘ 𝑇 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑇 ) ∖ { ∅ } ) ) ) ) |
105 |
95 104
|
mpbird |
⊢ ( ( Fun ( iEdg ‘ 𝑇 ) ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ) |
106 |
105
|
ex |
⊢ ( Fun ( iEdg ‘ 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) → ( 𝑆 ∈ UHGraph → 𝑇 ∈ UHGraph ) ) ) |
107 |
106
|
3imp31 |
⊢ ( ( 𝑆 ∈ UHGraph ∧ 𝐹 ∈ ( 𝑆 GraphIso 𝑇 ) ∧ Fun ( iEdg ‘ 𝑇 ) ) → 𝑇 ∈ UHGraph ) |