Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` S ) = ( Vtx ` S ) |
2 |
|
eqid |
|- ( Vtx ` T ) = ( Vtx ` T ) |
3 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
4 |
|
eqid |
|- ( iEdg ` T ) = ( iEdg ` T ) |
5 |
1 2 3 4
|
grimprop |
|- ( F e. ( S GraphIso T ) -> ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) ) |
6 |
|
fdmrn |
|- ( Fun ( iEdg ` T ) <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
7 |
6
|
biimpi |
|- ( Fun ( iEdg ` T ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
9 |
8
|
adantr |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ran ( iEdg ` T ) ) |
10 |
|
funfn |
|- ( Fun ( iEdg ` T ) <-> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
11 |
10
|
biimpi |
|- ( Fun ( iEdg ` T ) -> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( iEdg ` T ) Fn dom ( iEdg ` T ) ) |
13 |
|
f1ofo |
|- ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
14 |
13
|
3ad2ant2 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) ) |
16 |
|
foelcdmi |
|- ( ( j : dom ( iEdg ` S ) -onto-> dom ( iEdg ` T ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
17 |
15 16
|
sylan |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ x e. dom ( iEdg ` T ) ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) |
18 |
17
|
ex |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( x e. dom ( iEdg ` T ) -> E. y e. dom ( iEdg ` S ) ( j ` y ) = x ) ) |
19 |
|
2fveq3 |
|- ( i = y -> ( ( iEdg ` T ) ` ( j ` i ) ) = ( ( iEdg ` T ) ` ( j ` y ) ) ) |
20 |
|
fveq2 |
|- ( i = y -> ( ( iEdg ` S ) ` i ) = ( ( iEdg ` S ) ` y ) ) |
21 |
20
|
imaeq2d |
|- ( i = y -> ( F " ( ( iEdg ` S ) ` i ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) |
22 |
19 21
|
eqeq12d |
|- ( i = y -> ( ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) <-> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
23 |
22
|
rspcv |
|- ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) ) |
25 |
|
f1ofun |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> Fun F ) |
26 |
25
|
3ad2ant1 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> Fun F ) |
27 |
26
|
adantr |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> Fun F ) |
28 |
|
fvex |
|- ( ( iEdg ` S ) ` y ) e. _V |
29 |
28
|
a1i |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) e. _V ) |
30 |
|
funimaexg |
|- ( ( Fun F /\ ( ( iEdg ` S ) ` y ) e. _V ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. _V ) |
31 |
27 29 30
|
syl2an2r |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. _V ) |
32 |
|
f1of |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> F : ( Vtx ` S ) --> ( Vtx ` T ) ) |
33 |
32
|
fimassd |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
35 |
34
|
adantr |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
36 |
35
|
adantr |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) C_ ( Vtx ` T ) ) |
37 |
31 36
|
elpwd |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ~P ( Vtx ` T ) ) |
38 |
|
f1odm |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> dom F = ( Vtx ` S ) ) |
39 |
38
|
adantr |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> dom F = ( Vtx ` S ) ) |
40 |
39
|
adantr |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> dom F = ( Vtx ` S ) ) |
41 |
40
|
ineq1d |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) = ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) ) |
42 |
|
ffvelcdm |
|- ( ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) /\ y e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
43 |
42
|
ex |
|- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( y e. dom ( iEdg ` S ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
44 |
43
|
adantl |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
45 |
|
eldifsn |
|- ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) <-> ( ( ( iEdg ` S ) ` y ) e. ~P ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) ) |
46 |
28
|
elpw |
|- ( ( ( iEdg ` S ) ` y ) e. ~P ( Vtx ` S ) <-> ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) ) |
47 |
45 46
|
bianbi |
|- ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) <-> ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) ) |
48 |
|
sseqin2 |
|- ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) <-> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
49 |
48
|
biimpi |
|- ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
50 |
49
|
adantr |
|- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) = ( ( iEdg ` S ) ` y ) ) |
51 |
|
simpr |
|- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( iEdg ` S ) ` y ) =/= (/) ) |
52 |
50 51
|
eqnetrd |
|- ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
53 |
52
|
a1i |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( ( ( ( iEdg ` S ) ` y ) C_ ( Vtx ` S ) /\ ( ( iEdg ` S ) ` y ) =/= (/) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
54 |
47 53
|
biimtrid |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( ( ( iEdg ` S ) ` y ) e. ( ~P ( Vtx ` S ) \ { (/) } ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
55 |
44 54
|
syld |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
56 |
55
|
imp |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( Vtx ` S ) i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
57 |
41 56
|
eqnetrd |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
58 |
57
|
ex |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
59 |
58
|
3adant2 |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
60 |
59
|
adantr |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
61 |
60
|
imp |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( dom F i^i ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
62 |
61
|
imadisjlnd |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) =/= (/) ) |
63 |
|
eldifsn |
|- ( ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( ( F " ( ( iEdg ` S ) ` y ) ) e. ~P ( Vtx ` T ) /\ ( F " ( ( iEdg ` S ) ` y ) ) =/= (/) ) ) |
64 |
37 62 63
|
sylanbrc |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
65 |
64
|
adantr |
|- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
66 |
|
eleq1 |
|- ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
67 |
66
|
adantl |
|- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( F " ( ( iEdg ` S ) ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
68 |
65 67
|
mpbird |
|- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
69 |
|
fveq2 |
|- ( ( j ` y ) = x -> ( ( iEdg ` T ) ` ( j ` y ) ) = ( ( iEdg ` T ) ` x ) ) |
70 |
69
|
eleq1d |
|- ( ( j ` y ) = x -> ( ( ( iEdg ` T ) ` ( j ` y ) ) e. ( ~P ( Vtx ` T ) \ { (/) } ) <-> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
71 |
68 70
|
syl5ibcom |
|- ( ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) /\ ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
72 |
71
|
ex |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( ( ( iEdg ` T ) ` ( j ` y ) ) = ( F " ( ( iEdg ` S ) ` y ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
73 |
24 72
|
syld |
|- ( ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) /\ y e. dom ( iEdg ` S ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
74 |
73
|
ex |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( y e. dom ( iEdg ` S ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
75 |
74
|
com23 |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
76 |
75
|
ex |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
77 |
76
|
3imp |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( y e. dom ( iEdg ` S ) -> ( ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
78 |
77
|
rexlimdv |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( E. y e. dom ( iEdg ` S ) ( j ` y ) = x -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
79 |
18 78
|
syld |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( x e. dom ( iEdg ` T ) -> ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
80 |
79
|
ralrimiv |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) /\ Fun ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
81 |
80
|
3exp |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
82 |
81
|
3exp |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( Fun ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
83 |
82
|
com35 |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) -> ( A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) ) |
84 |
83
|
impd |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
85 |
84
|
3imp |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
86 |
85
|
imp |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) |
87 |
|
fnfvrnss |
|- ( ( ( iEdg ` T ) Fn dom ( iEdg ` T ) /\ A. x e. dom ( iEdg ` T ) ( ( iEdg ` T ) ` x ) e. ( ~P ( Vtx ` T ) \ { (/) } ) ) -> ran ( iEdg ` T ) C_ ( ~P ( Vtx ` T ) \ { (/) } ) ) |
88 |
12 86 87
|
syl2an2r |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ran ( iEdg ` T ) C_ ( ~P ( Vtx ` T ) \ { (/) } ) ) |
89 |
9 88
|
fssd |
|- ( ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) /\ ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) |
90 |
89
|
ex |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) /\ Fun ( iEdg ` T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
91 |
90
|
3exp |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
92 |
91
|
exlimdv |
|- ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) -> ( E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) ) |
93 |
92
|
imp |
|- ( ( F : ( Vtx ` S ) -1-1-onto-> ( Vtx ` T ) /\ E. j ( j : dom ( iEdg ` S ) -1-1-onto-> dom ( iEdg ` T ) /\ A. i e. dom ( iEdg ` S ) ( ( iEdg ` T ) ` ( j ` i ) ) = ( F " ( ( iEdg ` S ) ` i ) ) ) ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
94 |
5 93
|
syl |
|- ( F e. ( S GraphIso T ) -> ( Fun ( iEdg ` T ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
95 |
94
|
impcom |
|- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
96 |
|
grimdmrel |
|- Rel dom GraphIso |
97 |
96
|
ovrcl |
|- ( F e. ( S GraphIso T ) -> ( S e. _V /\ T e. _V ) ) |
98 |
1 3
|
isuhgr |
|- ( S e. _V -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
99 |
98
|
adantr |
|- ( ( S e. _V /\ T e. _V ) -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
100 |
2 4
|
isuhgr |
|- ( T e. _V -> ( T e. UHGraph <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
101 |
100
|
adantl |
|- ( ( S e. _V /\ T e. _V ) -> ( T e. UHGraph <-> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) |
102 |
99 101
|
imbi12d |
|- ( ( S e. _V /\ T e. _V ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
103 |
97 102
|
syl |
|- ( F e. ( S GraphIso T ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
104 |
103
|
adantl |
|- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( ( S e. UHGraph -> T e. UHGraph ) <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) -> ( iEdg ` T ) : dom ( iEdg ` T ) --> ( ~P ( Vtx ` T ) \ { (/) } ) ) ) ) |
105 |
95 104
|
mpbird |
|- ( ( Fun ( iEdg ` T ) /\ F e. ( S GraphIso T ) ) -> ( S e. UHGraph -> T e. UHGraph ) ) |
106 |
105
|
ex |
|- ( Fun ( iEdg ` T ) -> ( F e. ( S GraphIso T ) -> ( S e. UHGraph -> T e. UHGraph ) ) ) |
107 |
106
|
3imp31 |
|- ( ( S e. UHGraph /\ F e. ( S GraphIso T ) /\ Fun ( iEdg ` T ) ) -> T e. UHGraph ) |