| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgcoscmulx.a |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
itgcoscmulx.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
itgcoscmulx.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
itgcoscmulx.blec |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
| 5 |
|
itgcoscmulx.an0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 6 |
2 3
|
iccssred |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 7 |
6
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) |
| 8 |
7
|
eqcomd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 12 |
11
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 15 |
13 14
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 16 |
15
|
sincld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 18 |
16 13 17
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
| 19 |
12 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ∈ ℂ ) |
| 20 |
19
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) : ℝ ⟶ ℂ ) |
| 21 |
|
ssidd |
⊢ ( 𝜑 → ℝ ⊆ ℝ ) |
| 22 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 23 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 24 |
22 23
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 25 |
11 20 21 6 24
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ↾ ( 𝐵 [,] 𝐶 ) ) ) = ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 26 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 28 |
12 16
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( sin ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 29 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 30 |
29 12
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 31 |
30
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 32 |
29 31
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 33 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) ) |
| 36 |
16
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) : ℂ ⟶ ℂ ) |
| 37 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 38 |
|
dvsinax |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 39 |
1 38
|
syl |
⊢ ( 𝜑 → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 40 |
39
|
dmeqd |
⊢ ( 𝜑 → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 41 |
15
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 42 |
13 41
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 43 |
42
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℂ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ ) |
| 44 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ ℂ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ℂ → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) |
| 46 |
40 45
|
eqtr2d |
⊢ ( 𝜑 → ℂ = dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 47 |
10 46
|
sseqtrid |
⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 48 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ) ) → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) |
| 49 |
27 36 37 47 48
|
syl22anc |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) |
| 50 |
39
|
reseq1d |
⊢ ( 𝜑 → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) = ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) ) |
| 51 |
11
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ↾ ℝ ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 52 |
49 50 51
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ↾ ℝ ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 53 |
35 52
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 54 |
27 28 32 53 1 5
|
dvmptdivc |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 55 |
|
iccntr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) ) |
| 56 |
2 3 55
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) = ( 𝐵 (,) 𝐶 ) ) |
| 57 |
54 56
|
reseq12d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) = ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
| 58 |
|
ioossre |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ℝ |
| 59 |
|
resmpt |
⊢ ( ( 𝐵 (,) 𝐶 ) ⊆ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 60 |
58 59
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ℝ ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) ) |
| 61 |
|
elioore |
⊢ ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) → 𝑦 ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) → 𝑦 ∈ ℂ ) |
| 63 |
62 41
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 64 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 65 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ≠ 0 ) |
| 66 |
63 64 65
|
divcan3d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) = ( cos ‘ ( 𝐴 · 𝑦 ) ) ) |
| 67 |
66
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 68 |
57 60 67
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑦 ∈ ℝ ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐵 [,] 𝐶 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 69 |
9 25 68
|
3eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) = ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 71 |
|
oveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑥 ) ) |
| 72 |
71
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 73 |
72
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) ∧ 𝑦 = 𝑥 ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 74 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
| 75 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 76 |
58 11
|
sstrid |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ℂ ) |
| 77 |
76
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ℂ ) |
| 78 |
75 77
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 79 |
78
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 80 |
70 73 74 79
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) = ( cos ‘ ( 𝐴 · 𝑥 ) ) ) |
| 81 |
80
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑥 ) ) = ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) ) |
| 82 |
81
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( cos ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 83 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) = ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) |
| 84 |
|
oveq2 |
⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) |
| 85 |
84
|
fveq2d |
⊢ ( 𝑦 = 𝐶 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝐶 ) ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝑦 = 𝐶 → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐶 ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 88 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 89 |
3
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 90 |
|
ubicc2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 91 |
88 89 4 90
|
syl3anc |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 92 |
3
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 93 |
1 92
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 94 |
93
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 · 𝐶 ) ) ∈ ℂ ) |
| 95 |
94 1 5
|
divcld |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ∈ ℂ ) |
| 96 |
83 87 91 95
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) = ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) ) |
| 97 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( sin ‘ ( 𝐴 · 𝑦 ) ) = ( sin ‘ ( 𝐴 · 𝐵 ) ) ) |
| 99 |
98
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 101 |
|
lbicc2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 102 |
88 89 4 101
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 103 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 104 |
1 103
|
mulcld |
⊢ ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 105 |
104
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( 𝐴 · 𝐵 ) ) ∈ ℂ ) |
| 106 |
105 1 5
|
divcld |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ∈ ℂ ) |
| 107 |
83 100 102 106
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) = ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) |
| 108 |
96 107
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 109 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
| 110 |
109
|
a1i |
⊢ ( 𝜑 → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 111 |
76 1 37
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 112 |
76 37
|
idcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 113 |
111 112
|
mulcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 114 |
110 113
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 115 |
69 114
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ ( ( 𝐵 (,) 𝐶 ) –cn→ ℂ ) ) |
| 116 |
|
ioossicc |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) |
| 117 |
116
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 118 |
|
ioombl |
⊢ ( 𝐵 (,) 𝐶 ) ∈ dom vol |
| 119 |
118
|
a1i |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ∈ dom vol ) |
| 120 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐴 ∈ ℂ ) |
| 121 |
6 10
|
sstrdi |
⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℂ ) |
| 122 |
121
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑦 ∈ ℂ ) |
| 123 |
120 122
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 124 |
123
|
coscld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ) → ( cos ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 125 |
121 1 37
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 126 |
121 37
|
idcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝑦 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 127 |
125 126
|
mulcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( 𝐴 · 𝑦 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 128 |
110 127
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 129 |
|
cniccibl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 130 |
2 3 128 129
|
syl3anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 131 |
117 119 124 130
|
iblss |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 (,) 𝐶 ) ↦ ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ∈ 𝐿1 ) |
| 132 |
69 131
|
eqeltrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ∈ 𝐿1 ) |
| 133 |
|
sincn |
⊢ sin ∈ ( ℂ –cn→ ℂ ) |
| 134 |
133
|
a1i |
⊢ ( 𝜑 → sin ∈ ( ℂ –cn→ ℂ ) ) |
| 135 |
134 127
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 136 |
|
neneq |
⊢ ( 𝐴 ≠ 0 → ¬ 𝐴 = 0 ) |
| 137 |
|
elsni |
⊢ ( 𝐴 ∈ { 0 } → 𝐴 = 0 ) |
| 138 |
137
|
con3i |
⊢ ( ¬ 𝐴 = 0 → ¬ 𝐴 ∈ { 0 } ) |
| 139 |
5 136 138
|
3syl |
⊢ ( 𝜑 → ¬ 𝐴 ∈ { 0 } ) |
| 140 |
1 139
|
eldifd |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 141 |
|
difssd |
⊢ ( 𝜑 → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
| 142 |
121 140 141
|
constcncfg |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ 𝐴 ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ( ℂ ∖ { 0 } ) ) ) |
| 143 |
135 142
|
divcncf |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ∈ ( ( 𝐵 [,] 𝐶 ) –cn→ ℂ ) ) |
| 144 |
2 3 4 115 132 143
|
ftc2 |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐶 ) − ( ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ‘ 𝐵 ) ) ) |
| 145 |
94 105 1 5
|
divsubdird |
⊢ ( 𝜑 → ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) / 𝐴 ) − ( ( sin ‘ ( 𝐴 · 𝐵 ) ) / 𝐴 ) ) ) |
| 146 |
108 144 145
|
3eqtr4d |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( ( ℝ D ( 𝑦 ∈ ( 𝐵 [,] 𝐶 ) ↦ ( ( sin ‘ ( 𝐴 · 𝑦 ) ) / 𝐴 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) ) |
| 147 |
82 146
|
eqtrd |
⊢ ( 𝜑 → ∫ ( 𝐵 (,) 𝐶 ) ( cos ‘ ( 𝐴 · 𝑥 ) ) d 𝑥 = ( ( ( sin ‘ ( 𝐴 · 𝐶 ) ) − ( sin ‘ ( 𝐴 · 𝐵 ) ) ) / 𝐴 ) ) |