| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → sin : ℂ ⟶ ℂ ) |
| 3 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 4 |
3
|
fmpttd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) : ℂ ⟶ ℂ ) |
| 5 |
|
fcompt |
⊢ ( ( sin : ℂ ⟶ ℂ ∧ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) : ℂ ⟶ ℂ ) → ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 6 |
2 4 5
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 7 |
|
eqidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑤 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ∧ 𝑦 = 𝑤 ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝑤 ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝑤 ∈ ℂ ) |
| 11 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝐴 · 𝑤 ) ∈ ℂ ) |
| 12 |
7 9 10 11
|
fvmptd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) = ( 𝐴 · 𝑤 ) ) |
| 13 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) = ( sin ‘ ( 𝐴 · 𝑤 ) ) ) |
| 14 |
13
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝐴 · 𝑤 ) = ( 𝐴 · 𝑦 ) ) |
| 16 |
15
|
fveq2d |
⊢ ( 𝑤 = 𝑦 → ( sin ‘ ( 𝐴 · 𝑤 ) ) = ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 17 |
16
|
cbvmptv |
⊢ ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) |
| 18 |
17
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) |
| 19 |
6 14 18
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) = ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( ℂ D ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 21 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 22 |
21
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 23 |
|
dvsin |
⊢ ( ℂ D sin ) = cos |
| 24 |
23
|
dmeqi |
⊢ dom ( ℂ D sin ) = dom cos |
| 25 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
| 26 |
25
|
fdmi |
⊢ dom cos = ℂ |
| 27 |
24 26
|
eqtri |
⊢ dom ( ℂ D sin ) = ℂ |
| 28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D sin ) = ℂ ) |
| 29 |
|
id |
⊢ ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) |
| 30 |
29
|
cbvmptv |
⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) |
| 31 |
30
|
oveq2i |
⊢ ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) |
| 32 |
31
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ) |
| 33 |
|
cnex |
⊢ ℂ ∈ V |
| 34 |
33
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ V ) |
| 35 |
|
snex |
⊢ { 𝐴 } ∈ V |
| 36 |
35
|
a1i |
⊢ ( 𝐴 ∈ ℂ → { 𝐴 } ∈ V ) |
| 37 |
34 36
|
xpexd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) ∈ V ) |
| 38 |
33
|
mptex |
⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V |
| 39 |
38
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V ) |
| 40 |
|
offval3 |
⊢ ( ( ( ℂ × { 𝐴 } ) ∈ V ∧ ( 𝑤 ∈ ℂ ↦ 𝑤 ) ∈ V ) → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 41 |
37 39 40
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 42 |
|
fconst6g |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) : ℂ ⟶ ℂ ) |
| 43 |
42
|
fdmd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ × { 𝐴 } ) = ℂ ) |
| 44 |
|
eqid |
⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) |
| 45 |
|
id |
⊢ ( 𝑤 ∈ ℂ → 𝑤 ∈ ℂ ) |
| 46 |
44 45
|
fmpti |
⊢ ( 𝑤 ∈ ℂ ↦ 𝑤 ) : ℂ ⟶ ℂ |
| 47 |
46
|
fdmi |
⊢ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ℂ |
| 48 |
47
|
a1i |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ℂ ) |
| 49 |
43 48
|
ineq12d |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ( ℂ ∩ ℂ ) ) |
| 50 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
| 51 |
50
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ ∩ ℂ ) = ℂ ) |
| 52 |
49 51
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) = ℂ ) |
| 53 |
52
|
mpteq1d |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) ) |
| 54 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) = 𝐴 ) |
| 55 |
|
eqidd |
⊢ ( 𝑦 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ 𝑤 ) = ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) |
| 56 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) |
| 57 |
|
id |
⊢ ( 𝑦 ∈ ℂ → 𝑦 ∈ ℂ ) |
| 58 |
55 56 57 57
|
fvmptd |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) = 𝑦 ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) = 𝑦 ) |
| 60 |
54 59
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) = ( 𝐴 · 𝑦 ) ) |
| 61 |
60
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 62 |
53 61
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( 𝑤 ∈ ℂ ↦ 𝑤 ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑦 ) · ( ( 𝑤 ∈ ℂ ↦ 𝑤 ) ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 63 |
32 41 62
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( ℂ D ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 65 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) = ( 𝑦 ∈ ℂ ↦ 𝑦 ) |
| 66 |
65 57
|
fmpti |
⊢ ( 𝑦 ∈ ℂ ↦ 𝑦 ) : ℂ ⟶ ℂ |
| 67 |
66
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 𝑦 ) : ℂ ⟶ ℂ ) |
| 68 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 69 |
21
|
a1i |
⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 70 |
69
|
dvmptid |
⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 71 |
70
|
mptru |
⊢ ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) |
| 72 |
71
|
dmeqi |
⊢ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = dom ( 𝑦 ∈ ℂ ↦ 1 ) |
| 73 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 74 |
73
|
rgenw |
⊢ ∀ 𝑦 ∈ ℂ 1 ∈ ℂ |
| 75 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ 1 ) = ( 𝑦 ∈ ℂ ↦ 1 ) |
| 76 |
75
|
fmpt |
⊢ ( ∀ 𝑦 ∈ ℂ 1 ∈ ℂ ↔ ( 𝑦 ∈ ℂ ↦ 1 ) : ℂ ⟶ ℂ ) |
| 77 |
74 76
|
mpbi |
⊢ ( 𝑦 ∈ ℂ ↦ 1 ) : ℂ ⟶ ℂ |
| 78 |
77
|
fdmi |
⊢ dom ( 𝑦 ∈ ℂ ↦ 1 ) = ℂ |
| 79 |
72 78
|
eqtri |
⊢ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ℂ |
| 80 |
79
|
a1i |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ℂ ) |
| 81 |
22 67 68 80
|
dvcmulf |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( ( ℂ × { 𝐴 } ) ∘f · ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 82 |
64 81
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 83 |
82
|
dmeqd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ) |
| 84 |
|
ovexd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ∈ V ) |
| 85 |
|
offval3 |
⊢ ( ( ( ℂ × { 𝐴 } ) ∈ V ∧ ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ∈ V ) → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 86 |
37 84 85
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 87 |
86
|
dmeqd |
⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ × { 𝐴 } ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 88 |
43 80
|
ineq12d |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ( ℂ ∩ ℂ ) ) |
| 89 |
88 51
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) = ℂ ) |
| 90 |
89
|
mpteq1d |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 91 |
90
|
dmeqd |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = dom ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) ) |
| 92 |
|
eqid |
⊢ ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) |
| 93 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) = 𝐴 ) |
| 94 |
71
|
fveq1i |
⊢ ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) |
| 95 |
94
|
a1i |
⊢ ( 𝑤 ∈ ℂ → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) ) |
| 96 |
|
eqidd |
⊢ ( 𝑤 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ 1 ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 97 |
|
eqidd |
⊢ ( ( 𝑤 ∈ ℂ ∧ 𝑦 = 𝑤 ) → 1 = 1 ) |
| 98 |
73
|
a1i |
⊢ ( 𝑤 ∈ ℂ → 1 ∈ ℂ ) |
| 99 |
96 97 45 98
|
fvmptd |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑦 ∈ ℂ ↦ 1 ) ‘ 𝑤 ) = 1 ) |
| 100 |
95 99
|
eqtrd |
⊢ ( 𝑤 ∈ ℂ → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = 1 ) |
| 101 |
100
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) = 1 ) |
| 102 |
93 101
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) = ( 𝐴 · 1 ) ) |
| 103 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · 1 ) ∈ ℂ ) |
| 104 |
73 103
|
mpan2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) ∈ ℂ ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 𝐴 · 1 ) ∈ ℂ ) |
| 106 |
102 105
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ∈ ℂ ) |
| 107 |
92 106
|
dmmptd |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ℂ ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ℂ ) |
| 108 |
91 107
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑤 ∈ ( dom ( ℂ × { 𝐴 } ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ) ↦ ( ( ( ℂ × { 𝐴 } ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) ‘ 𝑤 ) ) ) = ℂ ) |
| 109 |
83 87 108
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ℂ ) |
| 110 |
22 22 2 4 28 109
|
dvcof |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( sin ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 111 |
23
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D sin ) = cos ) |
| 112 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
| 113 |
112
|
a1i |
⊢ ( 𝐴 ∈ ℂ → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 114 |
111 113
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D sin ) ∈ ( ℂ –cn→ ℂ ) ) |
| 115 |
33
|
mptex |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V |
| 116 |
115
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V ) |
| 117 |
|
coexg |
⊢ ( ( ( ℂ D sin ) ∈ ( ℂ –cn→ ℂ ) ∧ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∈ V ) → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) |
| 118 |
114 116 117
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) |
| 119 |
|
ovexd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) |
| 120 |
|
offval3 |
⊢ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ∧ ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∈ V ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) |
| 121 |
118 119 120
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) |
| 122 |
4
|
frnd |
⊢ ( 𝐴 ∈ ℂ → ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ ℂ ) |
| 123 |
122 28
|
sseqtrrd |
⊢ ( 𝐴 ∈ ℂ → ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ dom ( ℂ D sin ) ) |
| 124 |
|
dmcosseq |
⊢ ( ran ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ⊆ dom ( ℂ D sin ) → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 125 |
123 124
|
syl |
⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 126 |
|
ovex |
⊢ ( 𝐴 · 𝑦 ) ∈ V |
| 127 |
|
eqid |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) |
| 128 |
126 127
|
dmmpti |
⊢ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ℂ |
| 129 |
128
|
a1i |
⊢ ( 𝐴 ∈ ℂ → dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) = ℂ ) |
| 130 |
125 129
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ℂ ) |
| 131 |
130 109
|
ineq12d |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( ℂ ∩ ℂ ) ) |
| 132 |
131 51
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ℂ ) |
| 133 |
132
|
mpteq1d |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ( dom ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∩ dom ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) ) |
| 134 |
11
|
coscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( cos ‘ ( 𝐴 · 𝑤 ) ) ∈ ℂ ) |
| 135 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 136 |
134 135
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) = ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 137 |
136
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) ) |
| 138 |
23
|
coeq1i |
⊢ ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 139 |
138
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) |
| 140 |
139
|
fveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) |
| 141 |
4
|
ffund |
⊢ ( 𝐴 ∈ ℂ → Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 143 |
10 128
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → 𝑤 ∈ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) |
| 144 |
|
fvco |
⊢ ( ( Fun ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ∧ 𝑤 ∈ dom ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) → ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) |
| 145 |
142 143 144
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( cos ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) ) |
| 146 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( cos ‘ ( ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ‘ 𝑤 ) ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 147 |
140 145 146
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 148 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 149 |
|
0cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 0 ∈ ℂ ) |
| 150 |
22 68
|
dvmptc |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) = ( 𝑦 ∈ ℂ ↦ 0 ) ) |
| 151 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 152 |
73
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 1 ∈ ℂ ) |
| 153 |
71
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 154 |
22 148 149 150 151 152 153
|
dvmptmul |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) ) |
| 155 |
151
|
mul02d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 · 𝑦 ) = 0 ) |
| 156 |
148
|
mullidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 157 |
155 156
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = ( 0 + 𝐴 ) ) |
| 158 |
148
|
addlidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 0 + 𝐴 ) = 𝐴 ) |
| 159 |
157 158
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) = 𝐴 ) |
| 160 |
159
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( ( 0 · 𝑦 ) + ( 1 · 𝐴 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 161 |
154 160
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 163 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) ∧ 𝑦 = 𝑤 ) → 𝐴 = 𝐴 ) |
| 164 |
162 163 10 135
|
fvmptd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) = 𝐴 ) |
| 165 |
147 164
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) = ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) |
| 166 |
165
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ℂ ↦ ( ( cos ‘ ( 𝐴 · 𝑤 ) ) · 𝐴 ) ) ) |
| 167 |
8
|
fveq2d |
⊢ ( 𝑦 = 𝑤 → ( cos ‘ ( 𝐴 · 𝑦 ) ) = ( cos ‘ ( 𝐴 · 𝑤 ) ) ) |
| 168 |
167
|
oveq2d |
⊢ ( 𝑦 = 𝑤 → ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) = ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 169 |
168
|
cbvmptv |
⊢ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) |
| 170 |
169
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑤 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑤 ) ) ) ) ) |
| 171 |
137 166 170
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( 𝑤 ∈ ℂ ↦ ( ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) · ( ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ‘ 𝑤 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 172 |
121 133 171
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ℂ D sin ) ∘ ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ∘f · ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |
| 173 |
20 110 172
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( sin ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · ( cos ‘ ( 𝐴 · 𝑦 ) ) ) ) ) |