| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lncon.1 |
⊢ ( 𝑇 ∈ 𝐶 → 𝑆 ∈ ℝ ) |
| 2 |
|
lncon.2 |
⊢ ( ( 𝑇 ∈ 𝐶 ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
| 3 |
|
lncon.3 |
⊢ ( 𝑇 ∈ 𝐶 ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 4 |
|
lncon.4 |
⊢ ( 𝑦 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 5 |
|
lncon.5 |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
| 6 |
2
|
ralrimiva |
⊢ ( 𝑇 ∈ 𝐶 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) = ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) |
| 8 |
7
|
breq2d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝑆 → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 10 |
9
|
rspcev |
⊢ ( ( 𝑆 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑆 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 11 |
1 6 10
|
syl2anc |
⊢ ( 𝑇 ∈ 𝐶 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 12 |
|
arch |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 ) |
| 14 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
| 15 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) |
| 16 |
|
simpllr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑛 ∈ ℝ ) |
| 17 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 18 |
17
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 19 |
|
normge0 |
⊢ ( 𝑦 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 0 ≤ ( normℎ ‘ 𝑦 ) ) |
| 21 |
|
ltle |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → 𝑥 ≤ 𝑛 ) ) |
| 22 |
21
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ≤ 𝑛 ) |
| 23 |
22
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → 𝑥 ≤ 𝑛 ) |
| 24 |
15 16 18 20 23
|
lemul1ad |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 25 |
4
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 26 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑥 ∈ ℝ ) |
| 27 |
|
remulcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 28 |
26 17 27
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → 𝑛 ∈ ℝ ) |
| 30 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 31 |
29 17 30
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 32 |
|
letr |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 33 |
25 28 31 32
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ∧ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 34 |
24 33
|
mpan2d |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) ∧ 𝑦 ∈ ℋ ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 35 |
34
|
ralimdva |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 < 𝑛 ) → ( ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 36 |
35
|
impancom |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 37 |
36
|
an32s |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℝ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 38 |
14 37
|
sylan2 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 < 𝑛 → ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 39 |
38
|
reximdva |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ( ∃ 𝑛 ∈ ℕ 𝑥 < 𝑛 → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 40 |
13 39
|
mpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 41 |
40
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) |
| 42 |
|
simprr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) |
| 43 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℕ ) |
| 44 |
43
|
nnrpd |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑛 ∈ ℝ+ ) |
| 45 |
42 44
|
rpdivcld |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ( 𝑧 / 𝑛 ) ∈ ℝ+ ) |
| 46 |
|
simprr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑤 ∈ ℋ ) |
| 47 |
|
simprll |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) |
| 48 |
|
hvsubcl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) |
| 49 |
46 47 48
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ) |
| 50 |
|
2fveq3 |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) |
| 52 |
51
|
oveq2d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( 𝑛 · ( normℎ ‘ 𝑦 ) ) = ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 53 |
50 52
|
breq12d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) ) |
| 54 |
53
|
rspcva |
⊢ ( ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 55 |
49 54
|
sylan |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 56 |
55
|
an32s |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ) |
| 57 |
50
|
eleq1d |
⊢ ( 𝑦 = ( 𝑤 −ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) ) |
| 58 |
57 4
|
vtoclga |
⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 59 |
49 58
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 60 |
14
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑛 ∈ ℝ ) |
| 61 |
|
normcl |
⊢ ( ( 𝑤 −ℎ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) |
| 62 |
49 61
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) |
| 63 |
|
remulcl |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 64 |
60 62 63
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ) |
| 65 |
|
simprlr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ+ ) |
| 66 |
65
|
rpred |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → 𝑧 ∈ ℝ ) |
| 67 |
|
lelttr |
⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 68 |
59 64 66 67
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 69 |
68
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ≤ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) ∧ ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 70 |
56 69
|
mpand |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ) ) |
| 71 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 72 |
71
|
rpregt0d |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
| 74 |
|
ltmuldiv2 |
⊢ ( ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 75 |
62 66 73 74
|
syl3anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 76 |
75
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑛 · ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 77 |
46 47 5
|
syl2anc |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
| 78 |
77
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) |
| 79 |
78
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) = ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 80 |
79
|
breq1d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ ( 𝑤 −ℎ 𝑥 ) ) ) < 𝑧 ↔ ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 81 |
70 76 80
|
3imtr3d |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ∧ 𝑤 ∈ ℋ ) ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 82 |
81
|
anassrs |
⊢ ( ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑤 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 83 |
82
|
ralrimiva |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 84 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑧 / 𝑛 ) → ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 ↔ ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) ) ) |
| 85 |
84
|
rspceaimv |
⊢ ( ( ( 𝑧 / 𝑛 ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < ( 𝑧 / 𝑛 ) → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 86 |
45 83 85
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 87 |
86
|
ralrimivva |
⊢ ( ( 𝑛 ∈ ℕ ∧ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 88 |
87
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑧 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ℋ ( ( normℎ ‘ ( 𝑤 −ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( ( 𝑇 ‘ 𝑤 ) 𝑀 ( 𝑇 ‘ 𝑥 ) ) ) < 𝑧 ) ) |
| 89 |
88 3
|
sylibr |
⊢ ( ∃ 𝑛 ∈ ℕ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑛 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
| 90 |
41 89
|
syl |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) → 𝑇 ∈ 𝐶 ) |
| 91 |
11 90
|
impbii |
⊢ ( 𝑇 ∈ 𝐶 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |