Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
⊢ ω ∈ On |
2 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ ω ∈ On ) → ( 𝐴 ·o ω ) ∈ On ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ω ) ∈ On ) |
4 |
|
oawordex |
⊢ ( ( ( 𝐴 ·o ω ) ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ω ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ω ) ⊆ 𝐵 ↔ ∃ 𝑥 ∈ On ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 ) ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ∈ On ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → 𝐴 ∈ On ) |
8 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐴 ·o ω ) ∈ On ) |
9 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → 𝑥 ∈ On ) |
10 |
|
oaass |
⊢ ( ( 𝐴 ∈ On ∧ ( 𝐴 ·o ω ) ∈ On ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( 𝐴 ·o ω ) ) +o 𝑥 ) = ( 𝐴 +o ( ( 𝐴 ·o ω ) +o 𝑥 ) ) ) |
11 |
7 8 9 10
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( 𝐴 ·o ω ) ) +o 𝑥 ) = ( 𝐴 +o ( ( 𝐴 ·o ω ) +o 𝑥 ) ) ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
|
odi |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ∧ ω ∈ On ) → ( 𝐴 ·o ( 1o +o ω ) ) = ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o ω ) ) ) |
14 |
12 1 13
|
mp3an23 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ( 1o +o ω ) ) = ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o ω ) ) ) |
15 |
|
1oaomeqom |
⊢ ( 1o +o ω ) = ω |
16 |
15
|
oveq2i |
⊢ ( 𝐴 ·o ( 1o +o ω ) ) = ( 𝐴 ·o ω ) |
17 |
16
|
a1i |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ( 1o +o ω ) ) = ( 𝐴 ·o ω ) ) |
18 |
|
om1 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o 1o ) = 𝐴 ) |
19 |
18
|
oveq1d |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o ω ) ) = ( 𝐴 +o ( 𝐴 ·o ω ) ) ) |
20 |
14 17 19
|
3eqtr3rd |
⊢ ( 𝐴 ∈ On → ( 𝐴 +o ( 𝐴 ·o ω ) ) = ( 𝐴 ·o ω ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 +o ( 𝐴 ·o ω ) ) +o 𝑥 ) = ( ( 𝐴 ·o ω ) +o 𝑥 ) ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( 𝐴 +o ( 𝐴 ·o ω ) ) +o 𝑥 ) = ( ( 𝐴 ·o ω ) +o 𝑥 ) ) |
23 |
11 22
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → ( 𝐴 +o ( ( 𝐴 ·o ω ) +o 𝑥 ) ) = ( ( 𝐴 ·o ω ) +o 𝑥 ) ) |
24 |
|
oveq2 |
⊢ ( ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o ( ( 𝐴 ·o ω ) +o 𝑥 ) ) = ( 𝐴 +o 𝐵 ) ) |
25 |
|
id |
⊢ ( ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 → ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 ) |
26 |
24 25
|
eqeq12d |
⊢ ( ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 → ( ( 𝐴 +o ( ( 𝐴 ·o ω ) +o 𝑥 ) ) = ( ( 𝐴 ·o ω ) +o 𝑥 ) ↔ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
27 |
23 26
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑥 ∈ On ) → ( ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
28 |
27
|
rexlimdva |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑥 ∈ On ( ( 𝐴 ·o ω ) +o 𝑥 ) = 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
29 |
5 28
|
sylbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ω ) ⊆ 𝐵 → ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |
30 |
|
limom |
⊢ Lim ω |
31 |
|
omlim |
⊢ ( ( 𝐴 ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) → ( 𝐴 ·o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ) |
32 |
1 30 31
|
mpanr12 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 ·o ω ) = ∪ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
35 |
34
|
sseq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ( 𝐴 ·o ∅ ) ⊆ 𝐵 ) ) |
36 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
37 |
36
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ) ) |
38 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
39 |
38
|
sseq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ( 𝐴 ·o suc 𝑦 ) ⊆ 𝐵 ) ) |
40 |
|
om0 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) = ∅ ) |
41 |
|
0ss |
⊢ ∅ ⊆ 𝐵 |
42 |
40 41
|
eqsstrdi |
⊢ ( 𝐴 ∈ On → ( 𝐴 ·o ∅ ) ⊆ 𝐵 ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 ·o ∅ ) ⊆ 𝐵 ) |
44 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
45 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
46 |
6 44 45
|
syl2an |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ On ) |
47 |
|
simpr |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐵 ∈ On ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ω ) → 𝐵 ∈ On ) |
49 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ω ) → 𝐴 ∈ On ) |
50 |
46 48 49
|
3jca |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
51 |
50
|
expcom |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) ) |
52 |
51
|
adantrd |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) ) |
54 |
|
oaword |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ↔ ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) → ( ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ↔ ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) ⊆ ( 𝐴 +o 𝐵 ) ) ) |
56 |
55
|
biimpa |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) ⊆ ( 𝐴 +o 𝐵 ) ) |
57 |
|
simpl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → 𝐴 ∈ On ) |
58 |
12
|
a1i |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → 1o ∈ On ) |
59 |
44
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → 𝑦 ∈ On ) |
60 |
|
odi |
⊢ ( ( 𝐴 ∈ On ∧ 1o ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ·o ( 1o +o 𝑦 ) ) = ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o 𝑦 ) ) ) |
61 |
57 58 59 60
|
syl3anc |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 1o +o 𝑦 ) ) = ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o 𝑦 ) ) ) |
62 |
|
1onn |
⊢ 1o ∈ ω |
63 |
|
nnacom |
⊢ ( ( 1o ∈ ω ∧ 𝑦 ∈ ω ) → ( 1o +o 𝑦 ) = ( 𝑦 +o 1o ) ) |
64 |
62 63
|
mpan |
⊢ ( 𝑦 ∈ ω → ( 1o +o 𝑦 ) = ( 𝑦 +o 1o ) ) |
65 |
|
oa1suc |
⊢ ( 𝑦 ∈ On → ( 𝑦 +o 1o ) = suc 𝑦 ) |
66 |
44 65
|
syl |
⊢ ( 𝑦 ∈ ω → ( 𝑦 +o 1o ) = suc 𝑦 ) |
67 |
64 66
|
eqtrd |
⊢ ( 𝑦 ∈ ω → ( 1o +o 𝑦 ) = suc 𝑦 ) |
68 |
67
|
oveq2d |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ·o ( 1o +o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) |
69 |
68
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o ( 1o +o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) |
70 |
18
|
oveq1d |
⊢ ( 𝐴 ∈ On → ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 1o ) +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) ) |
72 |
61 69 71
|
3eqtr3rd |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ω ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) |
73 |
72
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ On → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) ) |
74 |
73
|
adantrd |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) ) |
75 |
74
|
adantrd |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) ) |
76 |
75
|
imp |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) |
77 |
76
|
adantr |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ) → ( 𝐴 +o ( 𝐴 ·o 𝑦 ) ) = ( 𝐴 ·o suc 𝑦 ) ) |
78 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |
79 |
78
|
adantl |
⊢ ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |
80 |
79
|
adantr |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ) → ( 𝐴 +o 𝐵 ) = 𝐵 ) |
81 |
56 77 80
|
3sstr3d |
⊢ ( ( ( 𝑦 ∈ ω ∧ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) ∧ ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 ) → ( 𝐴 ·o suc 𝑦 ) ⊆ 𝐵 ) |
82 |
81
|
exp31 |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( ( 𝐴 ·o 𝑦 ) ⊆ 𝐵 → ( 𝐴 ·o suc 𝑦 ) ⊆ 𝐵 ) ) ) |
83 |
35 37 39 43 82
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) ) |
84 |
83
|
com12 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝑥 ∈ ω → ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) ) |
85 |
84
|
ralrimiv |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ∀ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) |
86 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) |
87 |
85 86
|
sylibr |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ∪ 𝑥 ∈ ω ( 𝐴 ·o 𝑥 ) ⊆ 𝐵 ) |
88 |
33 87
|
eqsstrd |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝐴 +o 𝐵 ) = 𝐵 ) → ( 𝐴 ·o ω ) ⊆ 𝐵 ) |
89 |
88
|
ex |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 +o 𝐵 ) = 𝐵 → ( 𝐴 ·o ω ) ⊆ 𝐵 ) ) |
90 |
29 89
|
impbid |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝐴 ·o ω ) ⊆ 𝐵 ↔ ( 𝐴 +o 𝐵 ) = 𝐵 ) ) |