Metamath Proof Explorer


Theorem oaabsb

Description: The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025)

Ref Expression
Assertion oaabsb AOnBOnA𝑜ωBA+𝑜B=B

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 omcl AOnωOnA𝑜ωOn
3 1 2 mpan2 AOnA𝑜ωOn
4 oawordex A𝑜ωOnBOnA𝑜ωBxOnA𝑜ω+𝑜x=B
5 3 4 sylan AOnBOnA𝑜ωBxOnA𝑜ω+𝑜x=B
6 simpl AOnBOnAOn
7 6 adantr AOnBOnxOnAOn
8 3 ad2antrr AOnBOnxOnA𝑜ωOn
9 simpr AOnBOnxOnxOn
10 oaass AOnA𝑜ωOnxOnA+𝑜A𝑜ω+𝑜x=A+𝑜A𝑜ω+𝑜x
11 7 8 9 10 syl3anc AOnBOnxOnA+𝑜A𝑜ω+𝑜x=A+𝑜A𝑜ω+𝑜x
12 1on 1𝑜On
13 odi AOn1𝑜OnωOnA𝑜1𝑜+𝑜ω=A𝑜1𝑜+𝑜A𝑜ω
14 12 1 13 mp3an23 AOnA𝑜1𝑜+𝑜ω=A𝑜1𝑜+𝑜A𝑜ω
15 1oaomeqom 1𝑜+𝑜ω=ω
16 15 oveq2i A𝑜1𝑜+𝑜ω=A𝑜ω
17 16 a1i AOnA𝑜1𝑜+𝑜ω=A𝑜ω
18 om1 AOnA𝑜1𝑜=A
19 18 oveq1d AOnA𝑜1𝑜+𝑜A𝑜ω=A+𝑜A𝑜ω
20 14 17 19 3eqtr3rd AOnA+𝑜A𝑜ω=A𝑜ω
21 20 oveq1d AOnA+𝑜A𝑜ω+𝑜x=A𝑜ω+𝑜x
22 21 ad2antrr AOnBOnxOnA+𝑜A𝑜ω+𝑜x=A𝑜ω+𝑜x
23 11 22 eqtr3d AOnBOnxOnA+𝑜A𝑜ω+𝑜x=A𝑜ω+𝑜x
24 oveq2 A𝑜ω+𝑜x=BA+𝑜A𝑜ω+𝑜x=A+𝑜B
25 id A𝑜ω+𝑜x=BA𝑜ω+𝑜x=B
26 24 25 eqeq12d A𝑜ω+𝑜x=BA+𝑜A𝑜ω+𝑜x=A𝑜ω+𝑜xA+𝑜B=B
27 23 26 syl5ibcom AOnBOnxOnA𝑜ω+𝑜x=BA+𝑜B=B
28 27 rexlimdva AOnBOnxOnA𝑜ω+𝑜x=BA+𝑜B=B
29 5 28 sylbid AOnBOnA𝑜ωBA+𝑜B=B
30 limom Limω
31 omlim AOnωOnLimωA𝑜ω=xωA𝑜x
32 1 30 31 mpanr12 AOnA𝑜ω=xωA𝑜x
33 32 ad2antrr AOnBOnA+𝑜B=BA𝑜ω=xωA𝑜x
34 oveq2 x=A𝑜x=A𝑜
35 34 sseq1d x=A𝑜xBA𝑜B
36 oveq2 x=yA𝑜x=A𝑜y
37 36 sseq1d x=yA𝑜xBA𝑜yB
38 oveq2 x=sucyA𝑜x=A𝑜sucy
39 38 sseq1d x=sucyA𝑜xBA𝑜sucyB
40 om0 AOnA𝑜=
41 0ss B
42 40 41 eqsstrdi AOnA𝑜B
43 42 ad2antrr AOnBOnA+𝑜B=BA𝑜B
44 nnon yωyOn
45 omcl AOnyOnA𝑜yOn
46 6 44 45 syl2an AOnBOnyωA𝑜yOn
47 simpr AOnBOnBOn
48 47 adantr AOnBOnyωBOn
49 6 adantr AOnBOnyωAOn
50 46 48 49 3jca AOnBOnyωA𝑜yOnBOnAOn
51 50 expcom yωAOnBOnA𝑜yOnBOnAOn
52 51 adantrd yωAOnBOnA+𝑜B=BA𝑜yOnBOnAOn
53 52 imp yωAOnBOnA+𝑜B=BA𝑜yOnBOnAOn
54 oaword A𝑜yOnBOnAOnA𝑜yBA+𝑜A𝑜yA+𝑜B
55 53 54 syl yωAOnBOnA+𝑜B=BA𝑜yBA+𝑜A𝑜yA+𝑜B
56 55 biimpa yωAOnBOnA+𝑜B=BA𝑜yBA+𝑜A𝑜yA+𝑜B
57 simpl AOnyωAOn
58 12 a1i AOnyω1𝑜On
59 44 adantl AOnyωyOn
60 odi AOn1𝑜OnyOnA𝑜1𝑜+𝑜y=A𝑜1𝑜+𝑜A𝑜y
61 57 58 59 60 syl3anc AOnyωA𝑜1𝑜+𝑜y=A𝑜1𝑜+𝑜A𝑜y
62 1onn 1𝑜ω
63 nnacom 1𝑜ωyω1𝑜+𝑜y=y+𝑜1𝑜
64 62 63 mpan yω1𝑜+𝑜y=y+𝑜1𝑜
65 oa1suc yOny+𝑜1𝑜=sucy
66 44 65 syl yωy+𝑜1𝑜=sucy
67 64 66 eqtrd yω1𝑜+𝑜y=sucy
68 67 oveq2d yωA𝑜1𝑜+𝑜y=A𝑜sucy
69 68 adantl AOnyωA𝑜1𝑜+𝑜y=A𝑜sucy
70 18 oveq1d AOnA𝑜1𝑜+𝑜A𝑜y=A+𝑜A𝑜y
71 70 adantr AOnyωA𝑜1𝑜+𝑜A𝑜y=A+𝑜A𝑜y
72 61 69 71 3eqtr3rd AOnyωA+𝑜A𝑜y=A𝑜sucy
73 72 expcom yωAOnA+𝑜A𝑜y=A𝑜sucy
74 73 adantrd yωAOnBOnA+𝑜A𝑜y=A𝑜sucy
75 74 adantrd yωAOnBOnA+𝑜B=BA+𝑜A𝑜y=A𝑜sucy
76 75 imp yωAOnBOnA+𝑜B=BA+𝑜A𝑜y=A𝑜sucy
77 76 adantr yωAOnBOnA+𝑜B=BA𝑜yBA+𝑜A𝑜y=A𝑜sucy
78 simpr AOnBOnA+𝑜B=BA+𝑜B=B
79 78 adantl yωAOnBOnA+𝑜B=BA+𝑜B=B
80 79 adantr yωAOnBOnA+𝑜B=BA𝑜yBA+𝑜B=B
81 56 77 80 3sstr3d yωAOnBOnA+𝑜B=BA𝑜yBA𝑜sucyB
82 81 exp31 yωAOnBOnA+𝑜B=BA𝑜yBA𝑜sucyB
83 35 37 39 43 82 finds2 xωAOnBOnA+𝑜B=BA𝑜xB
84 83 com12 AOnBOnA+𝑜B=BxωA𝑜xB
85 84 ralrimiv AOnBOnA+𝑜B=BxωA𝑜xB
86 iunss xωA𝑜xBxωA𝑜xB
87 85 86 sylibr AOnBOnA+𝑜B=BxωA𝑜xB
88 33 87 eqsstrd AOnBOnA+𝑜B=BA𝑜ωB
89 88 ex AOnBOnA+𝑜B=BA𝑜ωB
90 29 89 impbid AOnBOnA𝑜ωBA+𝑜B=B