Metamath Proof Explorer


Theorem oaabsb

Description: The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025)

Ref Expression
Assertion oaabsb A On B On A 𝑜 ω B A + 𝑜 B = B

Proof

Step Hyp Ref Expression
1 omelon ω On
2 omcl A On ω On A 𝑜 ω On
3 1 2 mpan2 A On A 𝑜 ω On
4 oawordex A 𝑜 ω On B On A 𝑜 ω B x On A 𝑜 ω + 𝑜 x = B
5 3 4 sylan A On B On A 𝑜 ω B x On A 𝑜 ω + 𝑜 x = B
6 simpl A On B On A On
7 6 adantr A On B On x On A On
8 3 ad2antrr A On B On x On A 𝑜 ω On
9 simpr A On B On x On x On
10 oaass A On A 𝑜 ω On x On A + 𝑜 A 𝑜 ω + 𝑜 x = A + 𝑜 A 𝑜 ω + 𝑜 x
11 7 8 9 10 syl3anc A On B On x On A + 𝑜 A 𝑜 ω + 𝑜 x = A + 𝑜 A 𝑜 ω + 𝑜 x
12 1on 1 𝑜 On
13 odi A On 1 𝑜 On ω On A 𝑜 1 𝑜 + 𝑜 ω = A 𝑜 1 𝑜 + 𝑜 A 𝑜 ω
14 12 1 13 mp3an23 A On A 𝑜 1 𝑜 + 𝑜 ω = A 𝑜 1 𝑜 + 𝑜 A 𝑜 ω
15 1oaomeqom 1 𝑜 + 𝑜 ω = ω
16 15 oveq2i A 𝑜 1 𝑜 + 𝑜 ω = A 𝑜 ω
17 16 a1i A On A 𝑜 1 𝑜 + 𝑜 ω = A 𝑜 ω
18 om1 A On A 𝑜 1 𝑜 = A
19 18 oveq1d A On A 𝑜 1 𝑜 + 𝑜 A 𝑜 ω = A + 𝑜 A 𝑜 ω
20 14 17 19 3eqtr3rd A On A + 𝑜 A 𝑜 ω = A 𝑜 ω
21 20 oveq1d A On A + 𝑜 A 𝑜 ω + 𝑜 x = A 𝑜 ω + 𝑜 x
22 21 ad2antrr A On B On x On A + 𝑜 A 𝑜 ω + 𝑜 x = A 𝑜 ω + 𝑜 x
23 11 22 eqtr3d A On B On x On A + 𝑜 A 𝑜 ω + 𝑜 x = A 𝑜 ω + 𝑜 x
24 oveq2 A 𝑜 ω + 𝑜 x = B A + 𝑜 A 𝑜 ω + 𝑜 x = A + 𝑜 B
25 id A 𝑜 ω + 𝑜 x = B A 𝑜 ω + 𝑜 x = B
26 24 25 eqeq12d A 𝑜 ω + 𝑜 x = B A + 𝑜 A 𝑜 ω + 𝑜 x = A 𝑜 ω + 𝑜 x A + 𝑜 B = B
27 23 26 syl5ibcom A On B On x On A 𝑜 ω + 𝑜 x = B A + 𝑜 B = B
28 27 rexlimdva A On B On x On A 𝑜 ω + 𝑜 x = B A + 𝑜 B = B
29 5 28 sylbid A On B On A 𝑜 ω B A + 𝑜 B = B
30 limom Lim ω
31 omlim A On ω On Lim ω A 𝑜 ω = x ω A 𝑜 x
32 1 30 31 mpanr12 A On A 𝑜 ω = x ω A 𝑜 x
33 32 ad2antrr A On B On A + 𝑜 B = B A 𝑜 ω = x ω A 𝑜 x
34 oveq2 x = A 𝑜 x = A 𝑜
35 34 sseq1d x = A 𝑜 x B A 𝑜 B
36 oveq2 x = y A 𝑜 x = A 𝑜 y
37 36 sseq1d x = y A 𝑜 x B A 𝑜 y B
38 oveq2 x = suc y A 𝑜 x = A 𝑜 suc y
39 38 sseq1d x = suc y A 𝑜 x B A 𝑜 suc y B
40 om0 A On A 𝑜 =
41 0ss B
42 40 41 eqsstrdi A On A 𝑜 B
43 42 ad2antrr A On B On A + 𝑜 B = B A 𝑜 B
44 nnon y ω y On
45 omcl A On y On A 𝑜 y On
46 6 44 45 syl2an A On B On y ω A 𝑜 y On
47 simpr A On B On B On
48 47 adantr A On B On y ω B On
49 6 adantr A On B On y ω A On
50 46 48 49 3jca A On B On y ω A 𝑜 y On B On A On
51 50 expcom y ω A On B On A 𝑜 y On B On A On
52 51 adantrd y ω A On B On A + 𝑜 B = B A 𝑜 y On B On A On
53 52 imp y ω A On B On A + 𝑜 B = B A 𝑜 y On B On A On
54 oaword A 𝑜 y On B On A On A 𝑜 y B A + 𝑜 A 𝑜 y A + 𝑜 B
55 53 54 syl y ω A On B On A + 𝑜 B = B A 𝑜 y B A + 𝑜 A 𝑜 y A + 𝑜 B
56 55 biimpa y ω A On B On A + 𝑜 B = B A 𝑜 y B A + 𝑜 A 𝑜 y A + 𝑜 B
57 simpl A On y ω A On
58 12 a1i A On y ω 1 𝑜 On
59 44 adantl A On y ω y On
60 odi A On 1 𝑜 On y On A 𝑜 1 𝑜 + 𝑜 y = A 𝑜 1 𝑜 + 𝑜 A 𝑜 y
61 57 58 59 60 syl3anc A On y ω A 𝑜 1 𝑜 + 𝑜 y = A 𝑜 1 𝑜 + 𝑜 A 𝑜 y
62 1onn 1 𝑜 ω
63 nnacom 1 𝑜 ω y ω 1 𝑜 + 𝑜 y = y + 𝑜 1 𝑜
64 62 63 mpan y ω 1 𝑜 + 𝑜 y = y + 𝑜 1 𝑜
65 oa1suc y On y + 𝑜 1 𝑜 = suc y
66 44 65 syl y ω y + 𝑜 1 𝑜 = suc y
67 64 66 eqtrd y ω 1 𝑜 + 𝑜 y = suc y
68 67 oveq2d y ω A 𝑜 1 𝑜 + 𝑜 y = A 𝑜 suc y
69 68 adantl A On y ω A 𝑜 1 𝑜 + 𝑜 y = A 𝑜 suc y
70 18 oveq1d A On A 𝑜 1 𝑜 + 𝑜 A 𝑜 y = A + 𝑜 A 𝑜 y
71 70 adantr A On y ω A 𝑜 1 𝑜 + 𝑜 A 𝑜 y = A + 𝑜 A 𝑜 y
72 61 69 71 3eqtr3rd A On y ω A + 𝑜 A 𝑜 y = A 𝑜 suc y
73 72 expcom y ω A On A + 𝑜 A 𝑜 y = A 𝑜 suc y
74 73 adantrd y ω A On B On A + 𝑜 A 𝑜 y = A 𝑜 suc y
75 74 adantrd y ω A On B On A + 𝑜 B = B A + 𝑜 A 𝑜 y = A 𝑜 suc y
76 75 imp y ω A On B On A + 𝑜 B = B A + 𝑜 A 𝑜 y = A 𝑜 suc y
77 76 adantr y ω A On B On A + 𝑜 B = B A 𝑜 y B A + 𝑜 A 𝑜 y = A 𝑜 suc y
78 simpr A On B On A + 𝑜 B = B A + 𝑜 B = B
79 78 adantl y ω A On B On A + 𝑜 B = B A + 𝑜 B = B
80 79 adantr y ω A On B On A + 𝑜 B = B A 𝑜 y B A + 𝑜 B = B
81 56 77 80 3sstr3d y ω A On B On A + 𝑜 B = B A 𝑜 y B A 𝑜 suc y B
82 81 exp31 y ω A On B On A + 𝑜 B = B A 𝑜 y B A 𝑜 suc y B
83 35 37 39 43 82 finds2 x ω A On B On A + 𝑜 B = B A 𝑜 x B
84 83 com12 A On B On A + 𝑜 B = B x ω A 𝑜 x B
85 84 ralrimiv A On B On A + 𝑜 B = B x ω A 𝑜 x B
86 iunss x ω A 𝑜 x B x ω A 𝑜 x B
87 85 86 sylibr A On B On A + 𝑜 B = B x ω A 𝑜 x B
88 33 87 eqsstrd A On B On A + 𝑜 B = B A 𝑜 ω B
89 88 ex A On B On A + 𝑜 B = B A 𝑜 ω B
90 29 89 impbid A On B On A 𝑜 ω B A + 𝑜 B = B