Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
|
2 |
|
omcl |
|
3 |
1 2
|
mpan2 |
|
4 |
|
oawordex |
|
5 |
3 4
|
sylan |
|
6 |
|
simpl |
|
7 |
6
|
adantr |
|
8 |
3
|
ad2antrr |
|
9 |
|
simpr |
|
10 |
|
oaass |
|
11 |
7 8 9 10
|
syl3anc |
|
12 |
|
1on |
|
13 |
|
odi |
|
14 |
12 1 13
|
mp3an23 |
|
15 |
|
1oaomeqom |
|
16 |
15
|
oveq2i |
|
17 |
16
|
a1i |
|
18 |
|
om1 |
|
19 |
18
|
oveq1d |
|
20 |
14 17 19
|
3eqtr3rd |
|
21 |
20
|
oveq1d |
|
22 |
21
|
ad2antrr |
|
23 |
11 22
|
eqtr3d |
|
24 |
|
oveq2 |
|
25 |
|
id |
|
26 |
24 25
|
eqeq12d |
|
27 |
23 26
|
syl5ibcom |
|
28 |
27
|
rexlimdva |
|
29 |
5 28
|
sylbid |
|
30 |
|
limom |
|
31 |
|
omlim |
|
32 |
1 30 31
|
mpanr12 |
|
33 |
32
|
ad2antrr |
|
34 |
|
oveq2 |
|
35 |
34
|
sseq1d |
|
36 |
|
oveq2 |
|
37 |
36
|
sseq1d |
|
38 |
|
oveq2 |
|
39 |
38
|
sseq1d |
|
40 |
|
om0 |
|
41 |
|
0ss |
|
42 |
40 41
|
eqsstrdi |
|
43 |
42
|
ad2antrr |
|
44 |
|
nnon |
|
45 |
|
omcl |
|
46 |
6 44 45
|
syl2an |
|
47 |
|
simpr |
|
48 |
47
|
adantr |
|
49 |
6
|
adantr |
|
50 |
46 48 49
|
3jca |
|
51 |
50
|
expcom |
|
52 |
51
|
adantrd |
|
53 |
52
|
imp |
|
54 |
|
oaword |
|
55 |
53 54
|
syl |
|
56 |
55
|
biimpa |
|
57 |
|
simpl |
|
58 |
12
|
a1i |
|
59 |
44
|
adantl |
|
60 |
|
odi |
|
61 |
57 58 59 60
|
syl3anc |
|
62 |
|
1onn |
|
63 |
|
nnacom |
|
64 |
62 63
|
mpan |
|
65 |
|
oa1suc |
|
66 |
44 65
|
syl |
|
67 |
64 66
|
eqtrd |
|
68 |
67
|
oveq2d |
|
69 |
68
|
adantl |
|
70 |
18
|
oveq1d |
|
71 |
70
|
adantr |
|
72 |
61 69 71
|
3eqtr3rd |
|
73 |
72
|
expcom |
|
74 |
73
|
adantrd |
|
75 |
74
|
adantrd |
|
76 |
75
|
imp |
|
77 |
76
|
adantr |
|
78 |
|
simpr |
|
79 |
78
|
adantl |
|
80 |
79
|
adantr |
|
81 |
56 77 80
|
3sstr3d |
|
82 |
81
|
exp31 |
|
83 |
35 37 39 43 82
|
finds2 |
|
84 |
83
|
com12 |
|
85 |
84
|
ralrimiv |
|
86 |
|
iunss |
|
87 |
85 86
|
sylibr |
|
88 |
33 87
|
eqsstrd |
|
89 |
88
|
ex |
|
90 |
29 89
|
impbid |
|