Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
|- _om e. On |
2 |
|
omcl |
|- ( ( A e. On /\ _om e. On ) -> ( A .o _om ) e. On ) |
3 |
1 2
|
mpan2 |
|- ( A e. On -> ( A .o _om ) e. On ) |
4 |
|
oawordex |
|- ( ( ( A .o _om ) e. On /\ B e. On ) -> ( ( A .o _om ) C_ B <-> E. x e. On ( ( A .o _om ) +o x ) = B ) ) |
5 |
3 4
|
sylan |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o _om ) C_ B <-> E. x e. On ( ( A .o _om ) +o x ) = B ) ) |
6 |
|
simpl |
|- ( ( A e. On /\ B e. On ) -> A e. On ) |
7 |
6
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> A e. On ) |
8 |
3
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> ( A .o _om ) e. On ) |
9 |
|
simpr |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> x e. On ) |
10 |
|
oaass |
|- ( ( A e. On /\ ( A .o _om ) e. On /\ x e. On ) -> ( ( A +o ( A .o _om ) ) +o x ) = ( A +o ( ( A .o _om ) +o x ) ) ) |
11 |
7 8 9 10
|
syl3anc |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> ( ( A +o ( A .o _om ) ) +o x ) = ( A +o ( ( A .o _om ) +o x ) ) ) |
12 |
|
1on |
|- 1o e. On |
13 |
|
odi |
|- ( ( A e. On /\ 1o e. On /\ _om e. On ) -> ( A .o ( 1o +o _om ) ) = ( ( A .o 1o ) +o ( A .o _om ) ) ) |
14 |
12 1 13
|
mp3an23 |
|- ( A e. On -> ( A .o ( 1o +o _om ) ) = ( ( A .o 1o ) +o ( A .o _om ) ) ) |
15 |
|
1oaomeqom |
|- ( 1o +o _om ) = _om |
16 |
15
|
oveq2i |
|- ( A .o ( 1o +o _om ) ) = ( A .o _om ) |
17 |
16
|
a1i |
|- ( A e. On -> ( A .o ( 1o +o _om ) ) = ( A .o _om ) ) |
18 |
|
om1 |
|- ( A e. On -> ( A .o 1o ) = A ) |
19 |
18
|
oveq1d |
|- ( A e. On -> ( ( A .o 1o ) +o ( A .o _om ) ) = ( A +o ( A .o _om ) ) ) |
20 |
14 17 19
|
3eqtr3rd |
|- ( A e. On -> ( A +o ( A .o _om ) ) = ( A .o _om ) ) |
21 |
20
|
oveq1d |
|- ( A e. On -> ( ( A +o ( A .o _om ) ) +o x ) = ( ( A .o _om ) +o x ) ) |
22 |
21
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> ( ( A +o ( A .o _om ) ) +o x ) = ( ( A .o _om ) +o x ) ) |
23 |
11 22
|
eqtr3d |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> ( A +o ( ( A .o _om ) +o x ) ) = ( ( A .o _om ) +o x ) ) |
24 |
|
oveq2 |
|- ( ( ( A .o _om ) +o x ) = B -> ( A +o ( ( A .o _om ) +o x ) ) = ( A +o B ) ) |
25 |
|
id |
|- ( ( ( A .o _om ) +o x ) = B -> ( ( A .o _om ) +o x ) = B ) |
26 |
24 25
|
eqeq12d |
|- ( ( ( A .o _om ) +o x ) = B -> ( ( A +o ( ( A .o _om ) +o x ) ) = ( ( A .o _om ) +o x ) <-> ( A +o B ) = B ) ) |
27 |
23 26
|
syl5ibcom |
|- ( ( ( A e. On /\ B e. On ) /\ x e. On ) -> ( ( ( A .o _om ) +o x ) = B -> ( A +o B ) = B ) ) |
28 |
27
|
rexlimdva |
|- ( ( A e. On /\ B e. On ) -> ( E. x e. On ( ( A .o _om ) +o x ) = B -> ( A +o B ) = B ) ) |
29 |
5 28
|
sylbid |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o _om ) C_ B -> ( A +o B ) = B ) ) |
30 |
|
limom |
|- Lim _om |
31 |
|
omlim |
|- ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A .o _om ) = U_ x e. _om ( A .o x ) ) |
32 |
1 30 31
|
mpanr12 |
|- ( A e. On -> ( A .o _om ) = U_ x e. _om ( A .o x ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A .o _om ) = U_ x e. _om ( A .o x ) ) |
34 |
|
oveq2 |
|- ( x = (/) -> ( A .o x ) = ( A .o (/) ) ) |
35 |
34
|
sseq1d |
|- ( x = (/) -> ( ( A .o x ) C_ B <-> ( A .o (/) ) C_ B ) ) |
36 |
|
oveq2 |
|- ( x = y -> ( A .o x ) = ( A .o y ) ) |
37 |
36
|
sseq1d |
|- ( x = y -> ( ( A .o x ) C_ B <-> ( A .o y ) C_ B ) ) |
38 |
|
oveq2 |
|- ( x = suc y -> ( A .o x ) = ( A .o suc y ) ) |
39 |
38
|
sseq1d |
|- ( x = suc y -> ( ( A .o x ) C_ B <-> ( A .o suc y ) C_ B ) ) |
40 |
|
om0 |
|- ( A e. On -> ( A .o (/) ) = (/) ) |
41 |
|
0ss |
|- (/) C_ B |
42 |
40 41
|
eqsstrdi |
|- ( A e. On -> ( A .o (/) ) C_ B ) |
43 |
42
|
ad2antrr |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A .o (/) ) C_ B ) |
44 |
|
nnon |
|- ( y e. _om -> y e. On ) |
45 |
|
omcl |
|- ( ( A e. On /\ y e. On ) -> ( A .o y ) e. On ) |
46 |
6 44 45
|
syl2an |
|- ( ( ( A e. On /\ B e. On ) /\ y e. _om ) -> ( A .o y ) e. On ) |
47 |
|
simpr |
|- ( ( A e. On /\ B e. On ) -> B e. On ) |
48 |
47
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ y e. _om ) -> B e. On ) |
49 |
6
|
adantr |
|- ( ( ( A e. On /\ B e. On ) /\ y e. _om ) -> A e. On ) |
50 |
46 48 49
|
3jca |
|- ( ( ( A e. On /\ B e. On ) /\ y e. _om ) -> ( ( A .o y ) e. On /\ B e. On /\ A e. On ) ) |
51 |
50
|
expcom |
|- ( y e. _om -> ( ( A e. On /\ B e. On ) -> ( ( A .o y ) e. On /\ B e. On /\ A e. On ) ) ) |
52 |
51
|
adantrd |
|- ( y e. _om -> ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( ( A .o y ) e. On /\ B e. On /\ A e. On ) ) ) |
53 |
52
|
imp |
|- ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) -> ( ( A .o y ) e. On /\ B e. On /\ A e. On ) ) |
54 |
|
oaword |
|- ( ( ( A .o y ) e. On /\ B e. On /\ A e. On ) -> ( ( A .o y ) C_ B <-> ( A +o ( A .o y ) ) C_ ( A +o B ) ) ) |
55 |
53 54
|
syl |
|- ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) -> ( ( A .o y ) C_ B <-> ( A +o ( A .o y ) ) C_ ( A +o B ) ) ) |
56 |
55
|
biimpa |
|- ( ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) /\ ( A .o y ) C_ B ) -> ( A +o ( A .o y ) ) C_ ( A +o B ) ) |
57 |
|
simpl |
|- ( ( A e. On /\ y e. _om ) -> A e. On ) |
58 |
12
|
a1i |
|- ( ( A e. On /\ y e. _om ) -> 1o e. On ) |
59 |
44
|
adantl |
|- ( ( A e. On /\ y e. _om ) -> y e. On ) |
60 |
|
odi |
|- ( ( A e. On /\ 1o e. On /\ y e. On ) -> ( A .o ( 1o +o y ) ) = ( ( A .o 1o ) +o ( A .o y ) ) ) |
61 |
57 58 59 60
|
syl3anc |
|- ( ( A e. On /\ y e. _om ) -> ( A .o ( 1o +o y ) ) = ( ( A .o 1o ) +o ( A .o y ) ) ) |
62 |
|
1onn |
|- 1o e. _om |
63 |
|
nnacom |
|- ( ( 1o e. _om /\ y e. _om ) -> ( 1o +o y ) = ( y +o 1o ) ) |
64 |
62 63
|
mpan |
|- ( y e. _om -> ( 1o +o y ) = ( y +o 1o ) ) |
65 |
|
oa1suc |
|- ( y e. On -> ( y +o 1o ) = suc y ) |
66 |
44 65
|
syl |
|- ( y e. _om -> ( y +o 1o ) = suc y ) |
67 |
64 66
|
eqtrd |
|- ( y e. _om -> ( 1o +o y ) = suc y ) |
68 |
67
|
oveq2d |
|- ( y e. _om -> ( A .o ( 1o +o y ) ) = ( A .o suc y ) ) |
69 |
68
|
adantl |
|- ( ( A e. On /\ y e. _om ) -> ( A .o ( 1o +o y ) ) = ( A .o suc y ) ) |
70 |
18
|
oveq1d |
|- ( A e. On -> ( ( A .o 1o ) +o ( A .o y ) ) = ( A +o ( A .o y ) ) ) |
71 |
70
|
adantr |
|- ( ( A e. On /\ y e. _om ) -> ( ( A .o 1o ) +o ( A .o y ) ) = ( A +o ( A .o y ) ) ) |
72 |
61 69 71
|
3eqtr3rd |
|- ( ( A e. On /\ y e. _om ) -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) |
73 |
72
|
expcom |
|- ( y e. _om -> ( A e. On -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) ) |
74 |
73
|
adantrd |
|- ( y e. _om -> ( ( A e. On /\ B e. On ) -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) ) |
75 |
74
|
adantrd |
|- ( y e. _om -> ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) ) |
76 |
75
|
imp |
|- ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) |
77 |
76
|
adantr |
|- ( ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) /\ ( A .o y ) C_ B ) -> ( A +o ( A .o y ) ) = ( A .o suc y ) ) |
78 |
|
simpr |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A +o B ) = B ) |
79 |
78
|
adantl |
|- ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) -> ( A +o B ) = B ) |
80 |
79
|
adantr |
|- ( ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) /\ ( A .o y ) C_ B ) -> ( A +o B ) = B ) |
81 |
56 77 80
|
3sstr3d |
|- ( ( ( y e. _om /\ ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) ) /\ ( A .o y ) C_ B ) -> ( A .o suc y ) C_ B ) |
82 |
81
|
exp31 |
|- ( y e. _om -> ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( ( A .o y ) C_ B -> ( A .o suc y ) C_ B ) ) ) |
83 |
35 37 39 43 82
|
finds2 |
|- ( x e. _om -> ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A .o x ) C_ B ) ) |
84 |
83
|
com12 |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( x e. _om -> ( A .o x ) C_ B ) ) |
85 |
84
|
ralrimiv |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> A. x e. _om ( A .o x ) C_ B ) |
86 |
|
iunss |
|- ( U_ x e. _om ( A .o x ) C_ B <-> A. x e. _om ( A .o x ) C_ B ) |
87 |
85 86
|
sylibr |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> U_ x e. _om ( A .o x ) C_ B ) |
88 |
33 87
|
eqsstrd |
|- ( ( ( A e. On /\ B e. On ) /\ ( A +o B ) = B ) -> ( A .o _om ) C_ B ) |
89 |
88
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( ( A +o B ) = B -> ( A .o _om ) C_ B ) ) |
90 |
29 89
|
impbid |
|- ( ( A e. On /\ B e. On ) -> ( ( A .o _om ) C_ B <-> ( A +o B ) = B ) ) |