| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pf1rcl.q |
⊢ 𝑄 = ran ( eval1 ‘ 𝑅 ) |
| 2 |
|
pf1f.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 3 |
|
mpfpf1.q |
⊢ 𝐸 = ran ( 1o eval 𝑅 ) |
| 4 |
1
|
pf1rcl |
⊢ ( 𝐹 ∈ 𝑄 → 𝑅 ∈ CRing ) |
| 5 |
|
id |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ 𝑄 ) |
| 6 |
5 1
|
eleqtrdi |
⊢ ( 𝐹 ∈ 𝑄 → 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) |
| 10 |
7 8 9 2
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝐹 ∈ 𝑄 → ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) |
| 14 |
12 13
|
rhmf |
⊢ ( ( eval1 ‘ 𝑅 ) ∈ ( ( Poly1 ‘ 𝑅 ) RingHom ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 15 |
|
ffn |
⊢ ( ( eval1 ‘ 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) → ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 16 |
|
fvelrnb |
⊢ ( ( eval1 ‘ 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) → ( 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) ) |
| 17 |
11 14 15 16
|
4syl |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∈ ran ( eval1 ‘ 𝑅 ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) ) |
| 18 |
6 17
|
mpbid |
⊢ ( 𝐹 ∈ 𝑄 → ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 ) |
| 19 |
|
eqid |
⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) |
| 20 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
| 21 |
8 12
|
ply1bas |
⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( 1o mPoly 𝑅 ) ) |
| 22 |
7 19 2 20 21
|
evl1val |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ) |
| 23 |
22
|
coeq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 24 |
|
coass |
⊢ ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 25 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 26 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 27 |
|
0ex |
⊢ ∅ ∈ V |
| 28 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) |
| 29 |
25 26 27 28
|
mapsncnv |
⊢ ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) = ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) |
| 30 |
29
|
coeq1i |
⊢ ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) |
| 31 |
25 26 27 28
|
mapsnf1o2 |
⊢ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 |
| 32 |
|
f1ococnv1 |
⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) : ( 𝐵 ↑m 1o ) –1-1-onto→ 𝐵 → ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
| 33 |
31 32
|
mp1i |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ◡ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
| 34 |
30 33
|
eqtr3id |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( I ↾ ( 𝐵 ↑m 1o ) ) ) |
| 35 |
34
|
coeq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) ) |
| 36 |
24 35
|
eqtrid |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑧 ∈ 𝐵 ↦ ( 1o × { 𝑧 } ) ) ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) ) |
| 37 |
|
eqid |
⊢ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) = ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) |
| 38 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) = ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) |
| 39 |
|
simpl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → 𝑅 ∈ CRing ) |
| 40 |
|
ovexd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( 𝐵 ↑m 1o ) ∈ V ) |
| 41 |
|
1on |
⊢ 1o ∈ On |
| 42 |
19 2 20 37
|
evlrhm |
⊢ ( ( 1o ∈ On ∧ 𝑅 ∈ CRing ) → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 43 |
41 42
|
mpan |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 44 |
21 38
|
rhmf |
⊢ ( ( 1o eval 𝑅 ) ∈ ( ( 1o mPoly 𝑅 ) RingHom ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) → ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) : ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ⟶ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ↑s ( 𝐵 ↑m 1o ) ) ) ) |
| 47 |
37 2 38 39 40 46
|
pwselbas |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 ) |
| 48 |
|
fcoi1 |
⊢ ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) : ( 𝐵 ↑m 1o ) ⟶ 𝐵 → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∘ ( I ↾ ( 𝐵 ↑m 1o ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
| 50 |
23 36 49
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ) |
| 51 |
45
|
ffnd |
⊢ ( 𝑅 ∈ CRing → ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 52 |
|
fnfvelrn |
⊢ ( ( ( 1o eval 𝑅 ) Fn ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ran ( 1o eval 𝑅 ) ) |
| 53 |
51 52
|
sylan |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ ran ( 1o eval 𝑅 ) ) |
| 54 |
53 3
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( 1o eval 𝑅 ) ‘ 𝑦 ) ∈ 𝐸 ) |
| 55 |
50 54
|
eqeltrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) |
| 56 |
|
coeq1 |
⊢ ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ) |
| 57 |
56
|
eleq1d |
⊢ ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ↔ ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
| 58 |
55 57
|
syl5ibcom |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
| 59 |
58
|
rexlimdva |
⊢ ( 𝑅 ∈ CRing → ( ∃ 𝑦 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ( ( eval1 ‘ 𝑅 ) ‘ 𝑦 ) = 𝐹 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) ) |
| 60 |
4 18 59
|
sylc |
⊢ ( 𝐹 ∈ 𝑄 → ( 𝐹 ∘ ( 𝑥 ∈ ( 𝐵 ↑m 1o ) ↦ ( 𝑥 ‘ ∅ ) ) ) ∈ 𝐸 ) |