| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pilem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 2 (,) 4 ) ) |
| 2 |
|
pilem2.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 3 |
|
pilem2.3 |
⊢ ( 𝜑 → ( sin ‘ 𝐴 ) = 0 ) |
| 4 |
|
pilem2.4 |
⊢ ( 𝜑 → ( sin ‘ 𝐵 ) = 0 ) |
| 5 |
|
df-pi |
⊢ π = inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) |
| 6 |
|
inss1 |
⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ+ |
| 7 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 8 |
6 7
|
sstri |
⊢ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ) |
| 10 |
|
0re |
⊢ 0 ∈ ℝ |
| 11 |
|
elinel1 |
⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 𝑦 ∈ ℝ+ ) |
| 12 |
11
|
rpge0d |
⊢ ( 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 0 ≤ 𝑦 ) |
| 13 |
12
|
rgen |
⊢ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 |
| 14 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) |
| 17 |
10 13 16
|
mp2an |
⊢ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 |
| 18 |
17
|
a1i |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) |
| 19 |
|
2re |
⊢ 2 ∈ ℝ |
| 20 |
2
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 21 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2 · 𝐵 ) ∈ ℝ ) |
| 22 |
19 20 21
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℝ ) |
| 23 |
|
elioore |
⊢ ( 𝐴 ∈ ( 2 (,) 4 ) → 𝐴 ∈ ℝ ) |
| 24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 25 |
22 24
|
resubcld |
⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ ) |
| 26 |
|
4re |
⊢ 4 ∈ ℝ |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
| 28 |
|
eliooord |
⊢ ( 𝐴 ∈ ( 2 (,) 4 ) → ( 2 < 𝐴 ∧ 𝐴 < 4 ) ) |
| 29 |
1 28
|
syl |
⊢ ( 𝜑 → ( 2 < 𝐴 ∧ 𝐴 < 4 ) ) |
| 30 |
29
|
simprd |
⊢ ( 𝜑 → 𝐴 < 4 ) |
| 31 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 32 |
19
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 33 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 34 |
|
2pos |
⊢ 0 < 2 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 36 |
29
|
simpld |
⊢ ( 𝜑 → 2 < 𝐴 ) |
| 37 |
33 32 24 35 36
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐴 ) |
| 38 |
24 37
|
elrpd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 39 |
|
pilem1 |
⊢ ( 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐴 ∈ ℝ+ ∧ ( sin ‘ 𝐴 ) = 0 ) ) |
| 40 |
38 3 39
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 41 |
40
|
ne0d |
⊢ ( 𝜑 → ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ) |
| 42 |
|
infrecl |
⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 43 |
8 17 42
|
mp3an13 |
⊢ ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 44 |
41 43
|
syl |
⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ∈ ℝ ) |
| 45 |
|
pilem1 |
⊢ ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) ) |
| 46 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 48 |
|
letric |
⊢ ( ( 2 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 2 ≤ 𝑥 ∨ 𝑥 ≤ 2 ) ) |
| 49 |
19 47 48
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 2 ≤ 𝑥 ∨ 𝑥 ≤ 2 ) ) |
| 50 |
49
|
ord |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ¬ 2 ≤ 𝑥 → 𝑥 ≤ 2 ) ) |
| 51 |
46
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ∈ ℝ ) |
| 52 |
|
rpgt0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) |
| 53 |
52
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 0 < 𝑥 ) |
| 54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ≤ 2 ) |
| 55 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 56 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 2 ∈ ℝ ) → ( 𝑥 ∈ ( 0 (,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 ≤ 2 ) ) ) |
| 57 |
55 19 56
|
mp2an |
⊢ ( 𝑥 ∈ ( 0 (,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 ≤ 2 ) ) |
| 58 |
51 53 54 57
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 𝑥 ∈ ( 0 (,] 2 ) ) |
| 59 |
|
sin02gt0 |
⊢ ( 𝑥 ∈ ( 0 (,] 2 ) → 0 < ( sin ‘ 𝑥 ) ) |
| 60 |
58 59
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → 0 < ( sin ‘ 𝑥 ) ) |
| 61 |
60
|
gt0ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑥 ≤ 2 ) → ( sin ‘ 𝑥 ) ≠ 0 ) |
| 62 |
61
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ≤ 2 → ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 63 |
50 62
|
syld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ¬ 2 ≤ 𝑥 → ( sin ‘ 𝑥 ) ≠ 0 ) ) |
| 64 |
63
|
necon4bd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( sin ‘ 𝑥 ) = 0 → 2 ≤ 𝑥 ) ) |
| 65 |
64
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ∧ ( sin ‘ 𝑥 ) = 0 ) → 2 ≤ 𝑥 ) ) |
| 66 |
45 65
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) → 2 ≤ 𝑥 ) ) |
| 67 |
66
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) |
| 68 |
|
infregelb |
⊢ ( ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ) ∧ 2 ∈ ℝ ) → ( 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) ) |
| 69 |
9 41 18 32 68
|
syl31anc |
⊢ ( 𝜑 → ( 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ↔ ∀ 𝑥 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 2 ≤ 𝑥 ) ) |
| 70 |
67 69
|
mpbird |
⊢ ( 𝜑 → 2 ≤ inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ) |
| 71 |
|
pilem1 |
⊢ ( 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( 𝐵 ∈ ℝ+ ∧ ( sin ‘ 𝐵 ) = 0 ) ) |
| 72 |
2 4 71
|
sylanbrc |
⊢ ( 𝜑 → 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 73 |
|
infrelb |
⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ∧ 𝐵 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝐵 ) |
| 74 |
9 18 72 73
|
syl3anc |
⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ 𝐵 ) |
| 75 |
32 44 20 70 74
|
letrd |
⊢ ( 𝜑 → 2 ≤ 𝐵 ) |
| 76 |
19 34
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 78 |
|
lemul2 |
⊢ ( ( 2 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 2 ≤ 𝐵 ↔ ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) ) |
| 79 |
32 20 77 78
|
syl3anc |
⊢ ( 𝜑 → ( 2 ≤ 𝐵 ↔ ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) ) |
| 80 |
75 79
|
mpbid |
⊢ ( 𝜑 → ( 2 · 2 ) ≤ ( 2 · 𝐵 ) ) |
| 81 |
31 80
|
eqbrtrrid |
⊢ ( 𝜑 → 4 ≤ ( 2 · 𝐵 ) ) |
| 82 |
24 27 22 30 81
|
ltletrd |
⊢ ( 𝜑 → 𝐴 < ( 2 · 𝐵 ) ) |
| 83 |
24 22
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < ( 2 · 𝐵 ) ↔ 0 < ( ( 2 · 𝐵 ) − 𝐴 ) ) ) |
| 84 |
82 83
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 85 |
25 84
|
elrpd |
⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ+ ) |
| 86 |
22
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℂ ) |
| 87 |
24
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 88 |
|
sinsub |
⊢ ( ( ( 2 · 𝐵 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 89 |
86 87 88
|
syl2anc |
⊢ ( 𝜑 → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 90 |
20
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 91 |
|
sin2t |
⊢ ( 𝐵 ∈ ℂ → ( sin ‘ ( 2 · 𝐵 ) ) = ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 92 |
90 91
|
syl |
⊢ ( 𝜑 → ( sin ‘ ( 2 · 𝐵 ) ) = ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 93 |
4
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) = ( 0 · ( cos ‘ 𝐵 ) ) ) |
| 94 |
90
|
coscld |
⊢ ( 𝜑 → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 95 |
94
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( cos ‘ 𝐵 ) ) = 0 ) |
| 96 |
93 95
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) = 0 ) |
| 97 |
96
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) = ( 2 · 0 ) ) |
| 98 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 99 |
97 98
|
eqtrdi |
⊢ ( 𝜑 → ( 2 · ( ( sin ‘ 𝐵 ) · ( cos ‘ 𝐵 ) ) ) = 0 ) |
| 100 |
92 99
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( 2 · 𝐵 ) ) = 0 ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) ) ) |
| 102 |
87
|
coscld |
⊢ ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 103 |
102
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( cos ‘ 𝐴 ) ) = 0 ) |
| 104 |
101 103
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) = 0 ) |
| 105 |
3
|
oveq2d |
⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) = ( ( cos ‘ ( 2 · 𝐵 ) ) · 0 ) ) |
| 106 |
86
|
coscld |
⊢ ( 𝜑 → ( cos ‘ ( 2 · 𝐵 ) ) ∈ ℂ ) |
| 107 |
106
|
mul01d |
⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · 0 ) = 0 ) |
| 108 |
105 107
|
eqtrd |
⊢ ( 𝜑 → ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) = 0 ) |
| 109 |
104 108
|
oveq12d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 − 0 ) ) |
| 110 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 111 |
109 110
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( sin ‘ ( 2 · 𝐵 ) ) · ( cos ‘ 𝐴 ) ) − ( ( cos ‘ ( 2 · 𝐵 ) ) · ( sin ‘ 𝐴 ) ) ) = 0 ) |
| 112 |
89 111
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = 0 ) |
| 113 |
|
pilem1 |
⊢ ( ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ↔ ( ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ℝ+ ∧ ( sin ‘ ( ( 2 · 𝐵 ) − 𝐴 ) ) = 0 ) ) |
| 114 |
85 112 113
|
sylanbrc |
⊢ ( 𝜑 → ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) |
| 115 |
|
infrelb |
⊢ ( ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) 𝑥 ≤ 𝑦 ∧ ( ( 2 · 𝐵 ) − 𝐴 ) ∈ ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) ) → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 116 |
9 18 114 115
|
syl3anc |
⊢ ( 𝜑 → inf ( ( ℝ+ ∩ ( ◡ sin “ { 0 } ) ) , ℝ , < ) ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 117 |
5 116
|
eqbrtrid |
⊢ ( 𝜑 → π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) |
| 118 |
5 44
|
eqeltrid |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 119 |
|
leaddsub |
⊢ ( ( π ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 2 · 𝐵 ) ∈ ℝ ) → ( ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ↔ π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) ) |
| 120 |
118 24 22 119
|
syl3anc |
⊢ ( 𝜑 → ( ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ↔ π ≤ ( ( 2 · 𝐵 ) − 𝐴 ) ) ) |
| 121 |
117 120
|
mpbird |
⊢ ( 𝜑 → ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) |
| 122 |
118 24
|
readdcld |
⊢ ( 𝜑 → ( π + 𝐴 ) ∈ ℝ ) |
| 123 |
|
ledivmul |
⊢ ( ( ( π + 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ↔ ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) ) |
| 124 |
122 20 77 123
|
syl3anc |
⊢ ( 𝜑 → ( ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ↔ ( π + 𝐴 ) ≤ ( 2 · 𝐵 ) ) ) |
| 125 |
121 124
|
mpbird |
⊢ ( 𝜑 → ( ( π + 𝐴 ) / 2 ) ≤ 𝐵 ) |