| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem3.g | ⊢ 𝐺  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 2 |  | psgnunilem3.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 3 |  | psgnunilem3.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | psgnunilem3.w1 | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 5 |  | psgnunilem3.l | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  =  𝐿 ) | 
						
							| 6 |  | psgnunilem3.w2 | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 7 |  | psgnunilem3.w3 | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 8 |  | psgnunilem3.in | ⊢ ( 𝜑  →  ¬  ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 9 | 5 6 | eqeltrrd | ⊢ ( 𝜑  →  𝐿  ∈  ℕ ) | 
						
							| 10 | 9 | nnnn0d | ⊢ ( 𝜑  →  𝐿  ∈  ℕ0 ) | 
						
							| 11 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝑇  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) | 
						
							| 13 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 15 | 9 | nngt0d | ⊢ ( 𝜑  →  0  <  𝐿 ) | 
						
							| 16 |  | elfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝐿 )  ↔  ( 0  ∈  ℕ0  ∧  𝐿  ∈  ℕ  ∧  0  <  𝐿 ) ) | 
						
							| 17 | 14 9 15 16 | syl3anbrc | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 18 | 5 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ..^ 𝐿 ) ) | 
						
							| 19 | 17 18 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 20 | 12 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑊 ‘ 0 )  ∈  𝑇 ) | 
						
							| 21 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 22 | 21 2 | pmtrfmvdn0 | ⊢ ( ( 𝑊 ‘ 0 )  ∈  𝑇  →  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ≠  ∅ ) | 
						
							| 23 | 20 22 | syl | ⊢ ( 𝜑  →  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ≠  ∅ ) | 
						
							| 24 |  | n0 | ⊢ ( dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ≠  ∅  ↔  ∃ 𝑒 𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( 𝜑  →  ∃ 𝑒 𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) | 
						
							| 26 |  | fzonel | ⊢ ¬  𝐿  ∈  ( 0 ..^ 𝐿 ) | 
						
							| 27 |  | simpr1 | ⊢ ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  →  𝐿  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 28 | 26 27 | mto | ⊢ ¬  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑤  ∈  Word  𝑇  →  ¬  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 30 | 29 | nrex | ⊢ ¬  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑎  =  0  →  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ↔  0  ∈  ( 0 ..^ 𝐿 ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑎  =  0  →  ( 𝑤 ‘ 𝑎 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 33 | 32 | difeq1d | ⊢ ( 𝑎  =  0  →  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  ( ( 𝑤 ‘ 0 )  ∖   I  ) ) | 
						
							| 34 | 33 | dmeqd | ⊢ ( 𝑎  =  0  →  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  dom  ( ( 𝑤 ‘ 0 )  ∖   I  ) ) | 
						
							| 35 | 34 | eleq2d | ⊢ ( 𝑎  =  0  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑎  =  0  →  ( 0 ..^ 𝑎 )  =  ( 0 ..^ 0 ) ) | 
						
							| 37 | 36 | raleqdv | ⊢ ( 𝑎  =  0  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 38 | 31 35 37 | 3anbi123d | ⊢ ( 𝑎  =  0  →  ( ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 39 | 38 | anbi2d | ⊢ ( 𝑎  =  0  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 40 | 39 | rexbidv | ⊢ ( 𝑎  =  0  →  ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑎  =  0  →  ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) )  ↔  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) ) | 
						
							| 42 |  | eleq1 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ↔  𝑏  ∈  ( 0 ..^ 𝐿 ) ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 𝑤 ‘ 𝑎 )  =  ( 𝑤 ‘ 𝑏 ) ) | 
						
							| 44 | 43 | difeq1d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  ( ( 𝑤 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 45 | 44 | dmeqd | ⊢ ( 𝑎  =  𝑏  →  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 46 | 45 | eleq2d | ⊢ ( 𝑎  =  𝑏  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  ) ) ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑎  =  𝑏  →  ( 0 ..^ 𝑎 )  =  ( 0 ..^ 𝑏 ) ) | 
						
							| 48 | 47 | raleqdv | ⊢ ( 𝑎  =  𝑏  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 49 | 42 46 48 | 3anbi123d | ⊢ ( 𝑎  =  𝑏  →  ( ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 50 | 49 | anbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 51 | 50 | rexbidv | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝐺  Σg  𝑤 )  =  ( 𝐺  Σg  𝑥 ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 54 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑥  →  ( ( ♯ ‘ 𝑤 )  =  𝐿  ↔  ( ♯ ‘ 𝑥 )  =  𝐿 ) ) | 
						
							| 55 | 53 54 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ↔  ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 ) ) ) | 
						
							| 56 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 𝑏 )  =  ( 𝑥 ‘ 𝑏 ) ) | 
						
							| 57 | 56 | difeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  =  ( ( 𝑥 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 58 | 57 | dmeqd | ⊢ ( 𝑤  =  𝑥  →  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  =  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 59 | 58 | eleq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  ) ) ) | 
						
							| 60 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 𝑐 )  =  ( 𝑥 ‘ 𝑐 ) ) | 
						
							| 61 | 60 | difeq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  =  ( ( 𝑥 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 62 | 61 | dmeqd | ⊢ ( 𝑤  =  𝑥  →  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  =  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 63 | 62 | eleq2d | ⊢ ( 𝑤  =  𝑥  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 64 | 63 | notbid | ⊢ ( 𝑤  =  𝑥  →  ( ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 65 | 64 | ralbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑐  =  𝑑  →  ( 𝑥 ‘ 𝑐 )  =  ( 𝑥 ‘ 𝑑 ) ) | 
						
							| 67 | 66 | difeq1d | ⊢ ( 𝑐  =  𝑑  →  ( ( 𝑥 ‘ 𝑐 )  ∖   I  )  =  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) | 
						
							| 68 | 67 | dmeqd | ⊢ ( 𝑐  =  𝑑  →  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  )  =  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) | 
						
							| 69 | 68 | eleq2d | ⊢ ( 𝑐  =  𝑑  →  ( 𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) | 
						
							| 70 | 69 | notbid | ⊢ ( 𝑐  =  𝑑  →  ( ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  )  ↔  ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) | 
						
							| 71 | 70 | cbvralvw | ⊢ ( ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) | 
						
							| 72 | 65 71 | bitrdi | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) | 
						
							| 73 | 59 72 | 3anbi23d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) | 
						
							| 74 | 55 73 | anbi12d | ⊢ ( 𝑤  =  𝑥  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) ) | 
						
							| 75 | 74 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) | 
						
							| 76 | 51 75 | bitrdi | ⊢ ( 𝑎  =  𝑏  →  ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) ) | 
						
							| 77 | 76 | imbi2d | ⊢ ( 𝑎  =  𝑏  →  ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) )  ↔  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) ) ) | 
						
							| 78 |  | eleq1 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ↔  ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 ) ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝑤 ‘ 𝑎 )  =  ( 𝑤 ‘ ( 𝑏  +  1 ) ) ) | 
						
							| 80 | 79 | difeq1d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  ) ) | 
						
							| 81 | 80 | dmeqd | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  ) ) | 
						
							| 82 | 81 | eleq2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  ) ) ) | 
						
							| 83 |  | oveq2 | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( 0 ..^ 𝑎 )  =  ( 0 ..^ ( 𝑏  +  1 ) ) ) | 
						
							| 84 | 83 | raleqdv | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 85 | 78 82 84 | 3anbi123d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 86 | 85 | anbi2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 87 | 86 | rexbidv | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 88 | 87 | imbi2d | ⊢ ( 𝑎  =  ( 𝑏  +  1 )  →  ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) )  ↔  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) ) | 
						
							| 89 |  | eleq1 | ⊢ ( 𝑎  =  𝐿  →  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ↔  𝐿  ∈  ( 0 ..^ 𝐿 ) ) ) | 
						
							| 90 |  | fveq2 | ⊢ ( 𝑎  =  𝐿  →  ( 𝑤 ‘ 𝑎 )  =  ( 𝑤 ‘ 𝐿 ) ) | 
						
							| 91 | 90 | difeq1d | ⊢ ( 𝑎  =  𝐿  →  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  ( ( 𝑤 ‘ 𝐿 )  ∖   I  ) ) | 
						
							| 92 | 91 | dmeqd | ⊢ ( 𝑎  =  𝐿  →  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  =  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  ) ) | 
						
							| 93 | 92 | eleq2d | ⊢ ( 𝑎  =  𝐿  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  ) ) ) | 
						
							| 94 |  | oveq2 | ⊢ ( 𝑎  =  𝐿  →  ( 0 ..^ 𝑎 )  =  ( 0 ..^ 𝐿 ) ) | 
						
							| 95 | 94 | raleqdv | ⊢ ( 𝑎  =  𝐿  →  ( ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 96 | 89 93 95 | 3anbi123d | ⊢ ( 𝑎  =  𝐿  →  ( ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 97 | 96 | anbi2d | ⊢ ( 𝑎  =  𝐿  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 98 | 97 | rexbidv | ⊢ ( 𝑎  =  𝐿  →  ( ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 99 | 98 | imbi2d | ⊢ ( 𝑎  =  𝐿  →  ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝑎  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑎 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝑎 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) )  ↔  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) ) | 
						
							| 100 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  𝑊  ∈  Word  𝑇 ) | 
						
							| 101 | 7 5 | jca | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑊 )  =  𝐿 ) ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ( ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑊 )  =  𝐿 ) ) | 
						
							| 103 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  0  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 104 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) | 
						
							| 105 |  | ral0 | ⊢ ∀ 𝑐  ∈  ∅ ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) | 
						
							| 106 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 107 | 106 | raleqi | ⊢ ( ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ∅ ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 108 | 105 107 | mpbir | ⊢ ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) | 
						
							| 109 | 108 | a1i | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 110 | 103 104 109 | 3jca | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 111 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝐺  Σg  𝑤 )  =  ( 𝐺  Σg  𝑊 ) ) | 
						
							| 112 | 111 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 113 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑊  →  ( ( ♯ ‘ 𝑤 )  =  𝐿  ↔  ( ♯ ‘ 𝑊 )  =  𝐿 ) ) | 
						
							| 114 | 112 113 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ↔  ( ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑊 )  =  𝐿 ) ) ) | 
						
							| 115 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 0 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 116 | 115 | difeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 0 )  ∖   I  )  =  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) | 
						
							| 117 | 116 | dmeqd | ⊢ ( 𝑤  =  𝑊  →  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  =  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) | 
						
							| 118 | 117 | eleq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) ) | 
						
							| 119 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑐 )  =  ( 𝑊 ‘ 𝑐 ) ) | 
						
							| 120 | 119 | difeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  =  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 121 | 120 | dmeqd | ⊢ ( 𝑤  =  𝑊  →  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  =  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) | 
						
							| 122 | 121 | eleq2d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 123 | 122 | notbid | ⊢ ( 𝑤  =  𝑊  →  ( ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 124 | 123 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  )  ↔  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) | 
						
							| 125 | 118 124 | 3anbi23d | ⊢ ( 𝑤  =  𝑊  →  ( ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) )  ↔  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 126 | 114 125 | anbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) )  ↔  ( ( ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑊 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 127 | 126 | rspcev | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑊 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑊 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑊 ‘ 𝑐 )  ∖   I  ) ) ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 128 | 100 102 110 127 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 0  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 0 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 0 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 129 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  𝐷  ∈  𝑉 ) | 
						
							| 130 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  𝑥  ∈  Word  𝑇 ) | 
						
							| 131 |  | simpll | ⊢ ( ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 132 | 131 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 133 |  | simplr | ⊢ ( ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  ( ♯ ‘ 𝑥 )  =  𝐿 ) | 
						
							| 134 | 133 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  ( ♯ ‘ 𝑥 )  =  𝐿 ) | 
						
							| 135 |  | simpr1 | ⊢ ( ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  𝑏  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 136 | 135 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  𝑏  ∈  ( 0 ..^ 𝐿 ) ) | 
						
							| 137 |  | simpr2 | ⊢ ( ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 138 | 137 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  ) ) | 
						
							| 139 |  | simpr3 | ⊢ ( ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) | 
						
							| 140 | 139 | ad2antll | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) | 
						
							| 141 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ↔  ( ♯ ‘ 𝑦 )  =  ( 𝐿  −  2 ) ) ) | 
						
							| 142 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐺  Σg  𝑥 )  =  ( 𝐺  Σg  𝑦 ) ) | 
						
							| 143 | 142 | eqeq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ↔  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 144 | 141 143 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ( ( ♯ ‘ 𝑦 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) ) | 
						
							| 145 | 144 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  Word  𝑇 ( ( ♯ ‘ 𝑥 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 ) )  ↔  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 146 | 8 145 | sylnib | ⊢ ( 𝜑  →  ¬  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 147 | 146 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  ¬  ∃ 𝑦  ∈  Word  𝑇 ( ( ♯ ‘ 𝑦 )  =  ( 𝐿  −  2 )  ∧  ( 𝐺  Σg  𝑦 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 148 | 1 2 129 130 132 134 136 138 140 147 | psgnunilem2 | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  ∧  ( 𝑥  ∈  Word  𝑇  ∧  ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) | 
						
							| 149 | 148 | rexlimdvaa | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ( ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 150 | 149 | a2i | ⊢ ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) )  →  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 151 | 150 | a1i | ⊢ ( 𝑏  ∈  ℕ0  →  ( ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑥  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑥 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑥 )  =  𝐿 )  ∧  ( 𝑏  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑏 )  ∖   I  )  ∧  ∀ 𝑑  ∈  ( 0 ..^ 𝑏 ) ¬  𝑒  ∈  dom  ( ( 𝑥 ‘ 𝑑 )  ∖   I  ) ) ) )  →  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( ( 𝑏  +  1 )  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ ( 𝑏  +  1 ) )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ ( 𝑏  +  1 ) ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) ) | 
						
							| 152 | 41 77 88 99 128 151 | nn0ind | ⊢ ( 𝐿  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ∃ 𝑤  ∈  Word  𝑇 ( ( ( 𝐺  Σg  𝑤 )  =  (  I   ↾  𝐷 )  ∧  ( ♯ ‘ 𝑤 )  =  𝐿 )  ∧  ( 𝐿  ∈  ( 0 ..^ 𝐿 )  ∧  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝐿 )  ∖   I  )  ∧  ∀ 𝑐  ∈  ( 0 ..^ 𝐿 ) ¬  𝑒  ∈  dom  ( ( 𝑤 ‘ 𝑐 )  ∖   I  ) ) ) ) ) | 
						
							| 153 | 30 152 | mtoi | ⊢ ( 𝐿  ∈  ℕ0  →  ¬  ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) ) ) | 
						
							| 154 | 153 | con2i | ⊢ ( ( 𝜑  ∧  𝑒  ∈  dom  ( ( 𝑊 ‘ 0 )  ∖   I  ) )  →  ¬  𝐿  ∈  ℕ0 ) | 
						
							| 155 | 25 154 | exlimddv | ⊢ ( 𝜑  →  ¬  𝐿  ∈  ℕ0 ) | 
						
							| 156 | 10 155 | pm2.65i | ⊢ ¬  𝜑 |