Metamath Proof Explorer


Theorem psgnunilem2

Description: Lemma for psgnuni . Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses psgnunilem2.g 𝐺 = ( SymGrp ‘ 𝐷 )
psgnunilem2.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
psgnunilem2.d ( 𝜑𝐷𝑉 )
psgnunilem2.w ( 𝜑𝑊 ∈ Word 𝑇 )
psgnunilem2.id ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) )
psgnunilem2.l ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 )
psgnunilem2.ix ( 𝜑𝐼 ∈ ( 0 ..^ 𝐿 ) )
psgnunilem2.a ( 𝜑𝐴 ∈ dom ( ( 𝑊𝐼 ) ∖ I ) )
psgnunilem2.al ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊𝑘 ) ∖ I ) )
psgnunilem2.in ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) )
Assertion psgnunilem2 ( 𝜑 → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) )

Proof

Step Hyp Ref Expression
1 psgnunilem2.g 𝐺 = ( SymGrp ‘ 𝐷 )
2 psgnunilem2.t 𝑇 = ran ( pmTrsp ‘ 𝐷 )
3 psgnunilem2.d ( 𝜑𝐷𝑉 )
4 psgnunilem2.w ( 𝜑𝑊 ∈ Word 𝑇 )
5 psgnunilem2.id ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) )
6 psgnunilem2.l ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 )
7 psgnunilem2.ix ( 𝜑𝐼 ∈ ( 0 ..^ 𝐿 ) )
8 psgnunilem2.a ( 𝜑𝐴 ∈ dom ( ( 𝑊𝐼 ) ∖ I ) )
9 psgnunilem2.al ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊𝑘 ) ∖ I ) )
10 psgnunilem2.in ( 𝜑 → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) )
11 wrd0 ∅ ∈ Word 𝑇
12 splcl ( ( 𝑊 ∈ Word 𝑇 ∧ ∅ ∈ Word 𝑇 ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ∈ Word 𝑇 )
13 4 11 12 sylancl ( 𝜑 → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ∈ Word 𝑇 )
14 13 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ∈ Word 𝑇 )
15 fzossfz ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 )
16 15 7 sseldi ( 𝜑𝐼 ∈ ( 0 ... 𝐿 ) )
17 elfznn0 ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐼 ∈ ℕ0 )
18 16 17 syl ( 𝜑𝐼 ∈ ℕ0 )
19 2nn0 2 ∈ ℕ0
20 nn0addcl ( ( 𝐼 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 𝐼 + 2 ) ∈ ℕ0 )
21 18 19 20 sylancl ( 𝜑 → ( 𝐼 + 2 ) ∈ ℕ0 )
22 18 nn0red ( 𝜑𝐼 ∈ ℝ )
23 nn0addge1 ( ( 𝐼 ∈ ℝ ∧ 2 ∈ ℕ0 ) → 𝐼 ≤ ( 𝐼 + 2 ) )
24 22 19 23 sylancl ( 𝜑𝐼 ≤ ( 𝐼 + 2 ) )
25 elfz2nn0 ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( 𝐼 + 2 ) ∈ ℕ0𝐼 ≤ ( 𝐼 + 2 ) ) )
26 18 21 24 25 syl3anbrc ( 𝜑𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) )
27 1 2 3 4 5 6 7 8 9 psgnunilem5 ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) )
28 fzofzp1 ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) )
29 27 28 syl ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) ∈ ( 0 ... 𝐿 ) )
30 df-2 2 = ( 1 + 1 )
31 30 oveq2i ( 𝐼 + 2 ) = ( 𝐼 + ( 1 + 1 ) )
32 18 nn0cnd ( 𝜑𝐼 ∈ ℂ )
33 1cnd ( 𝜑 → 1 ∈ ℂ )
34 32 33 33 addassd ( 𝜑 → ( ( 𝐼 + 1 ) + 1 ) = ( 𝐼 + ( 1 + 1 ) ) )
35 31 34 eqtr4id ( 𝜑 → ( 𝐼 + 2 ) = ( ( 𝐼 + 1 ) + 1 ) )
36 6 oveq2d ( 𝜑 → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... 𝐿 ) )
37 29 35 36 3eltr4d ( 𝜑 → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) )
38 11 a1i ( 𝜑 → ∅ ∈ Word 𝑇 )
39 4 26 37 38 spllen ( 𝜑 → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) )
40 hash0 ( ♯ ‘ ∅ ) = 0
41 40 oveq1i ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) )
42 df-neg - ( ( 𝐼 + 2 ) − 𝐼 ) = ( 0 − ( ( 𝐼 + 2 ) − 𝐼 ) )
43 41 42 eqtr4i ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - ( ( 𝐼 + 2 ) − 𝐼 )
44 2cn 2 ∈ ℂ
45 pncan2 ( ( 𝐼 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 )
46 32 44 45 sylancl ( 𝜑 → ( ( 𝐼 + 2 ) − 𝐼 ) = 2 )
47 46 negeqd ( 𝜑 → - ( ( 𝐼 + 2 ) − 𝐼 ) = - 2 )
48 43 47 syl5eq ( 𝜑 → ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = - 2 )
49 6 48 oveq12d ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ∅ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( 𝐿 + - 2 ) )
50 elfzel2 ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ℤ )
51 16 50 syl ( 𝜑𝐿 ∈ ℤ )
52 51 zcnd ( 𝜑𝐿 ∈ ℂ )
53 negsub ( ( 𝐿 ∈ ℂ ∧ 2 ∈ ℂ ) → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) )
54 52 44 53 sylancl ( 𝜑 → ( 𝐿 + - 2 ) = ( 𝐿 − 2 ) )
55 39 49 54 3eqtrd ( 𝜑 → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( 𝐿 − 2 ) )
56 55 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( 𝐿 − 2 ) )
57 splid ( ( 𝑊 ∈ Word 𝑇 ∧ ( 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) ∧ ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) = 𝑊 )
58 4 26 37 57 syl12anc ( 𝜑 → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) = 𝑊 )
59 58 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) ) = ( 𝐺 Σg 𝑊 ) )
60 59 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) ) = ( 𝐺 Σg 𝑊 ) )
61 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
62 1 symggrp ( 𝐷𝑉𝐺 ∈ Grp )
63 3 62 syl ( 𝜑𝐺 ∈ Grp )
64 grpmnd ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd )
65 63 64 syl ( 𝜑𝐺 ∈ Mnd )
66 65 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐺 ∈ Mnd )
67 2 1 61 symgtrf 𝑇 ⊆ ( Base ‘ 𝐺 )
68 sswrd ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) )
69 67 68 ax-mp Word 𝑇 ⊆ Word ( Base ‘ 𝐺 )
70 69 4 sseldi ( 𝜑𝑊 ∈ Word ( Base ‘ 𝐺 ) )
71 70 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) )
72 26 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) )
73 37 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) )
74 swrdcl ( 𝑊 ∈ Word ( Base ‘ 𝐺 ) → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ∈ Word ( Base ‘ 𝐺 ) )
75 70 74 syl ( 𝜑 → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ∈ Word ( Base ‘ 𝐺 ) )
76 75 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ∈ Word ( Base ‘ 𝐺 ) )
77 wrd0 ∅ ∈ Word ( Base ‘ 𝐺 )
78 77 a1i ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∅ ∈ Word ( Base ‘ 𝐺 ) )
79 6 oveq2d ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) )
80 27 79 eleqtrrd ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
81 swrds2 ( ( 𝑊 ∈ Word 𝑇𝐼 ∈ ℕ0 ∧ ( 𝐼 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) = ⟨“ ( 𝑊𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”⟩ )
82 4 18 80 81 syl3anc ( 𝜑 → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) = ⟨“ ( 𝑊𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”⟩ )
83 82 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) = ( 𝐺 Σg ⟨“ ( 𝑊𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”⟩ ) )
84 wrdf ( 𝑊 ∈ Word 𝑇𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 )
85 4 84 syl ( 𝜑𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 )
86 79 feq2d ( 𝜑 → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 ) )
87 85 86 mpbid ( 𝜑𝑊 : ( 0 ..^ 𝐿 ) ⟶ 𝑇 )
88 87 7 ffvelrnd ( 𝜑 → ( 𝑊𝐼 ) ∈ 𝑇 )
89 67 88 sseldi ( 𝜑 → ( 𝑊𝐼 ) ∈ ( Base ‘ 𝐺 ) )
90 87 27 ffvelrnd ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ 𝑇 )
91 67 90 sseldi ( 𝜑 → ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) )
92 eqid ( +g𝐺 ) = ( +g𝐺 )
93 61 92 gsumws2 ( ( 𝐺 ∈ Mnd ∧ ( 𝑊𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ⟨“ ( 𝑊𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”⟩ ) = ( ( 𝑊𝐼 ) ( +g𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
94 65 89 91 93 syl3anc ( 𝜑 → ( 𝐺 Σg ⟨“ ( 𝑊𝐼 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ”⟩ ) = ( ( 𝑊𝐼 ) ( +g𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
95 1 61 92 symgov ( ( ( 𝑊𝐼 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑊𝐼 ) ( +g𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
96 89 91 95 syl2anc ( 𝜑 → ( ( 𝑊𝐼 ) ( +g𝐺 ) ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
97 83 94 96 3eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) = ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
98 97 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) = ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
99 simpr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) )
100 1 symgid ( 𝐷𝑉 → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
101 3 100 syl ( 𝜑 → ( I ↾ 𝐷 ) = ( 0g𝐺 ) )
102 eqid ( 0g𝐺 ) = ( 0g𝐺 )
103 102 gsum0 ( 𝐺 Σg ∅ ) = ( 0g𝐺 )
104 101 103 eqtr4di ( 𝜑 → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) )
105 104 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( I ↾ 𝐷 ) = ( 𝐺 Σg ∅ ) )
106 98 99 105 3eqtrd ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) = ( 𝐺 Σg ∅ ) )
107 61 66 71 72 73 76 78 106 gsumspl ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) ) = ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) )
108 5 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) )
109 60 107 108 3eqtr3d ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( I ↾ 𝐷 ) )
110 fveqeq2 ( 𝑥 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) → ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ↔ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( 𝐿 − 2 ) ) )
111 oveq2 ( 𝑥 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) → ( 𝐺 Σg 𝑥 ) = ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) )
112 111 eqeq1d ( 𝑥 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) → ( ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( I ↾ 𝐷 ) ) )
113 110 112 anbi12d ( 𝑥 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) → ( ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) ↔ ( ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( I ↾ 𝐷 ) ) ) )
114 113 rspcev ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ∈ Word 𝑇 ∧ ( ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ∅ ⟩ ) ) = ( I ↾ 𝐷 ) ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) )
115 14 56 109 114 syl12anc ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) )
116 10 adantr ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ¬ ∃ 𝑥 ∈ Word 𝑇 ( ( ♯ ‘ 𝑥 ) = ( 𝐿 − 2 ) ∧ ( 𝐺 Σg 𝑥 ) = ( I ↾ 𝐷 ) ) )
117 115 116 pm2.21dd ( ( 𝜑 ∧ ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) )
118 117 ex ( 𝜑 → ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) ) )
119 4 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝑊 ∈ Word 𝑇 )
120 simprl ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝑟𝑇 )
121 simprr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝑠𝑇 )
122 120 121 s2cld ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ⟨“ 𝑟 𝑠 ”⟩ ∈ Word 𝑇 )
123 splcl ( ( 𝑊 ∈ Word 𝑇 ∧ ⟨“ 𝑟 𝑠 ”⟩ ∈ Word 𝑇 ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ∈ Word 𝑇 )
124 119 122 123 syl2anc ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ∈ Word 𝑇 )
125 124 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ∈ Word 𝑇 )
126 65 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐺 ∈ Mnd )
127 70 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝑊 ∈ Word ( Base ‘ 𝐺 ) )
128 26 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) )
129 37 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) )
130 69 122 sseldi ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ⟨“ 𝑟 𝑠 ”⟩ ∈ Word ( Base ‘ 𝐺 ) )
131 130 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ⟨“ 𝑟 𝑠 ”⟩ ∈ Word ( Base ‘ 𝐺 ) )
132 75 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ∈ Word ( Base ‘ 𝐺 ) )
133 simprr1 ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) )
134 97 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) = ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) )
135 65 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝐺 ∈ Mnd )
136 67 a1i ( 𝜑𝑇 ⊆ ( Base ‘ 𝐺 ) )
137 136 sselda ( ( 𝜑𝑟𝑇 ) → 𝑟 ∈ ( Base ‘ 𝐺 ) )
138 137 adantrr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝑟 ∈ ( Base ‘ 𝐺 ) )
139 136 sselda ( ( 𝜑𝑠𝑇 ) → 𝑠 ∈ ( Base ‘ 𝐺 ) )
140 139 adantrl ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝑠 ∈ ( Base ‘ 𝐺 ) )
141 61 92 gsumws2 ( ( 𝐺 ∈ Mnd ∧ 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ⟨“ 𝑟 𝑠 ”⟩ ) = ( 𝑟 ( +g𝐺 ) 𝑠 ) )
142 135 138 140 141 syl3anc ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝐺 Σg ⟨“ 𝑟 𝑠 ”⟩ ) = ( 𝑟 ( +g𝐺 ) 𝑠 ) )
143 1 61 92 symgov ( ( 𝑟 ∈ ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑟 ( +g𝐺 ) 𝑠 ) = ( 𝑟𝑠 ) )
144 138 140 143 syl2anc ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝑟 ( +g𝐺 ) 𝑠 ) = ( 𝑟𝑠 ) )
145 142 144 eqtrd ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝐺 Σg ⟨“ 𝑟 𝑠 ”⟩ ) = ( 𝑟𝑠 ) )
146 145 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ⟨“ 𝑟 𝑠 ”⟩ ) = ( 𝑟𝑠 ) )
147 133 134 146 3eqtr4rd ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ⟨“ 𝑟 𝑠 ”⟩ ) = ( 𝐺 Σg ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ) )
148 61 126 127 128 129 131 132 147 gsumspl ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) ) )
149 59 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ( 𝑊 substr ⟨ 𝐼 , ( 𝐼 + 2 ) ⟩ ) ⟩ ) ) = ( 𝐺 Σg 𝑊 ) )
150 5 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) )
151 148 149 150 3eqtrd ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) )
152 26 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) )
153 37 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) )
154 119 152 153 122 spllen ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) )
155 s2len ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) = 2
156 155 oveq1i ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) )
157 46 oveq2d ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = ( 2 − 2 ) )
158 44 subidi ( 2 − 2 ) = 0
159 157 158 eqtrdi ( 𝜑 → ( 2 − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 )
160 156 159 syl5eq ( 𝜑 → ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) = 0 )
161 160 oveq2d ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = ( ( ♯ ‘ 𝑊 ) + 0 ) )
162 6 52 eqeltrd ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ )
163 162 addid1d ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 0 ) = ( ♯ ‘ 𝑊 ) )
164 161 163 6 3eqtrd ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 )
165 164 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( ♯ ‘ 𝑊 ) + ( ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) − ( ( 𝐼 + 2 ) − 𝐼 ) ) ) = 𝐿 )
166 154 165 eqtrd ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 )
167 166 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 )
168 151 167 jca ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 ) )
169 27 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) )
170 simprr2 ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑠 ∖ I ) )
171 1nn0 1 ∈ ℕ0
172 2nn 2 ∈ ℕ
173 1lt2 1 < 2
174 elfzo0 ( 1 ∈ ( 0 ..^ 2 ) ↔ ( 1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2 ) )
175 171 172 173 174 mpbir3an 1 ∈ ( 0 ..^ 2 )
176 155 oveq2i ( 0 ..^ ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) ) = ( 0 ..^ 2 )
177 175 176 eleqtrri 1 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) )
178 177 a1i ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 1 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) ) )
179 119 152 153 122 178 splfv2a ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) = ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 1 ) )
180 s2fv1 ( 𝑠𝑇 → ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 1 ) = 𝑠 )
181 180 ad2antll ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 1 ) = 𝑠 )
182 179 181 eqtrd ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) = 𝑠 )
183 182 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) = 𝑠 )
184 183 difeq1d ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( 𝑠 ∖ I ) )
185 184 dmeqd ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( 𝑠 ∖ I ) )
186 170 185 eleqtrrd ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) )
187 fzosplitsni ( 𝐼 ∈ ( ℤ ‘ 0 ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) )
188 nn0uz 0 = ( ℤ ‘ 0 )
189 187 188 eleq2s ( 𝐼 ∈ ℕ0 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) )
190 18 189 syl ( 𝜑 → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) )
191 190 adantr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ↔ ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) ) )
192 fveq2 ( 𝑘 = 𝑗 → ( 𝑊𝑘 ) = ( 𝑊𝑗 ) )
193 192 difeq1d ( 𝑘 = 𝑗 → ( ( 𝑊𝑘 ) ∖ I ) = ( ( 𝑊𝑗 ) ∖ I ) )
194 193 dmeqd ( 𝑘 = 𝑗 → dom ( ( 𝑊𝑘 ) ∖ I ) = dom ( ( 𝑊𝑗 ) ∖ I ) )
195 194 eleq2d ( 𝑘 = 𝑗 → ( 𝐴 ∈ dom ( ( 𝑊𝑘 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑊𝑗 ) ∖ I ) ) )
196 195 notbid ( 𝑘 = 𝑗 → ( ¬ 𝐴 ∈ dom ( ( 𝑊𝑘 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊𝑗 ) ∖ I ) ) )
197 196 rspccva ( ( ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊𝑘 ) ∖ I ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊𝑗 ) ∖ I ) )
198 9 197 sylan ( ( 𝜑𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊𝑗 ) ∖ I ) )
199 198 adantlr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊𝑗 ) ∖ I ) )
200 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑊 ∈ Word 𝑇 )
201 26 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝐼 ∈ ( 0 ... ( 𝐼 + 2 ) ) )
202 37 ad2antrr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝐼 + 2 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) )
203 122 adantr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ⟨“ 𝑟 𝑠 ”⟩ ∈ Word 𝑇 )
204 simpr ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → 𝑗 ∈ ( 0 ..^ 𝐼 ) )
205 200 201 202 203 204 splfv1 ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) = ( 𝑊𝑗 ) )
206 205 difeq1d ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) = ( ( 𝑊𝑗 ) ∖ I ) )
207 206 dmeqd ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) = dom ( ( 𝑊𝑗 ) ∖ I ) )
208 199 207 neleqtrrd ( ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) ∧ 𝑗 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) )
209 208 ex ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
210 209 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
211 simprr3 ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) )
212 0nn0 0 ∈ ℕ0
213 2pos 0 < 2
214 elfzo0 ( 0 ∈ ( 0 ..^ 2 ) ↔ ( 0 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 0 < 2 ) )
215 212 172 213 214 mpbir3an 0 ∈ ( 0 ..^ 2 )
216 215 176 eleqtrri 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) )
217 216 a1i ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ ⟨“ 𝑟 𝑠 ”⟩ ) ) )
218 119 152 153 122 217 splfv2a ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 0 ) ) = ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 0 ) )
219 32 addid1d ( 𝜑 → ( 𝐼 + 0 ) = 𝐼 )
220 219 adantr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝐼 + 0 ) = 𝐼 )
221 220 fveq2d ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 0 ) ) = ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) )
222 s2fv0 ( 𝑟𝑇 → ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 0 ) = 𝑟 )
223 222 ad2antrl ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ⟨“ 𝑟 𝑠 ”⟩ ‘ 0 ) = 𝑟 )
224 218 221 223 3eqtr3d ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) = 𝑟 )
225 224 difeq1d ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) = ( 𝑟 ∖ I ) )
226 225 dmeqd ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) = dom ( 𝑟 ∖ I ) )
227 226 eleq2d ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) )
228 227 adantrr ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) ↔ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) )
229 211 228 mtbird ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) )
230 fveq2 ( 𝑗 = 𝐼 → ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) = ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) )
231 230 difeq1d ( 𝑗 = 𝐼 → ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) = ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) )
232 231 dmeqd ( 𝑗 = 𝐼 → dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) )
233 232 eleq2d ( 𝑗 = 𝐼 → ( 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) ) )
234 233 notbid ( 𝑗 = 𝐼 → ( ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝐼 ) ∖ I ) ) )
235 229 234 syl5ibrcom ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 = 𝐼 → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
236 210 235 jaod ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝑗 ∈ ( 0 ..^ 𝐼 ) ∨ 𝑗 = 𝐼 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
237 191 236 sylbid ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) → ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
238 237 ralrimiv ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) )
239 169 186 238 3jca ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
240 oveq2 ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( 𝐺 Σg 𝑤 ) = ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) )
241 240 eqeq1d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ↔ ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) ) )
242 fveqeq2 ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( ♯ ‘ 𝑤 ) = 𝐿 ↔ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 ) )
243 241 242 anbi12d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ↔ ( ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 ) ) )
244 fveq1 ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( 𝑤 ‘ ( 𝐼 + 1 ) ) = ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) )
245 244 difeq1d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) )
246 245 dmeqd ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) = dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) )
247 246 eleq2d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ) )
248 fveq1 ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( 𝑤𝑗 ) = ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) )
249 248 difeq1d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( 𝑤𝑗 ) ∖ I ) = ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) )
250 249 dmeqd ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → dom ( ( 𝑤𝑗 ) ∖ I ) = dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) )
251 250 eleq2d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
252 251 notbid ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
253 252 ralbidv ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ↔ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) )
254 247 253 3anbi23d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ↔ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) ) )
255 243 254 anbi12d ( 𝑤 = ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) → ( ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) ↔ ( ( ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) ) ) )
256 255 rspcev ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ∈ Word 𝑇 ∧ ( ( ( 𝐺 Σg ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( ( 𝑊 splice ⟨ 𝐼 , ( 𝐼 + 2 ) , ⟨“ 𝑟 𝑠 ”⟩ ⟩ ) ‘ 𝑗 ) ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) )
257 125 168 239 256 syl12anc ( ( 𝜑 ∧ ( ( 𝑟𝑇𝑠𝑇 ) ∧ ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) )
258 257 expr ( ( 𝜑 ∧ ( 𝑟𝑇𝑠𝑇 ) ) → ( ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) ) )
259 258 rexlimdvva ( 𝜑 → ( ∃ 𝑟𝑇𝑠𝑇 ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) ) )
260 2 3 88 90 8 psgnunilem1 ( 𝜑 → ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟𝑇𝑠𝑇 ( ( ( 𝑊𝐼 ) ∘ ( 𝑊 ‘ ( 𝐼 + 1 ) ) ) = ( 𝑟𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) )
261 118 259 260 mpjaod ( 𝜑 → ∃ 𝑤 ∈ Word 𝑇 ( ( ( 𝐺 Σg 𝑤 ) = ( I ↾ 𝐷 ) ∧ ( ♯ ‘ 𝑤 ) = 𝐿 ) ∧ ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∧ 𝐴 ∈ dom ( ( 𝑤 ‘ ( 𝐼 + 1 ) ) ∖ I ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( 𝐼 + 1 ) ) ¬ 𝐴 ∈ dom ( ( 𝑤𝑗 ) ∖ I ) ) ) )