| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnunilem2.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) |
| 2 |
|
psgnunilem2.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 3 |
|
psgnunilem2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
psgnunilem2.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑇 ) |
| 5 |
|
psgnunilem2.id |
⊢ ( 𝜑 → ( 𝐺 Σg 𝑊 ) = ( I ↾ 𝐷 ) ) |
| 6 |
|
psgnunilem2.l |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = 𝐿 ) |
| 7 |
|
psgnunilem2.ix |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝐿 ) ) |
| 8 |
|
psgnunilem2.a |
⊢ ( 𝜑 → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) |
| 9 |
|
psgnunilem2.al |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ) |
| 10 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
| 11 |
5
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 12 |
11
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = dom ( ( I ↾ 𝐷 ) ∖ I ) ) |
| 13 |
|
resss |
⊢ ( I ↾ 𝐷 ) ⊆ I |
| 14 |
|
ssdif0 |
⊢ ( ( I ↾ 𝐷 ) ⊆ I ↔ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ ) |
| 15 |
13 14
|
mpbi |
⊢ ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 16 |
15
|
dmeqi |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = dom ∅ |
| 17 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 18 |
16 17
|
eqtri |
⊢ dom ( ( I ↾ 𝐷 ) ∖ I ) = ∅ |
| 19 |
12 18
|
eqtrdi |
⊢ ( 𝜑 → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ∅ ) |
| 20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ↔ 𝐴 ∈ ∅ ) ) |
| 21 |
10 20
|
mtbiri |
⊢ ( 𝜑 → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ) |
| 22 |
1
|
symggrp |
⊢ ( 𝐷 ∈ 𝑉 → 𝐺 ∈ Grp ) |
| 23 |
|
grpmnd |
⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) |
| 24 |
3 22 23
|
3syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 26 |
2 1 25
|
symgtrf |
⊢ 𝑇 ⊆ ( Base ‘ 𝐺 ) |
| 27 |
|
sswrd |
⊢ ( 𝑇 ⊆ ( Base ‘ 𝐺 ) → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
| 28 |
26 27
|
mp1i |
⊢ ( 𝜑 → Word 𝑇 ⊆ Word ( Base ‘ 𝐺 ) ) |
| 29 |
28 4
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ Word ( Base ‘ 𝐺 ) ) |
| 30 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word ( Base ‘ 𝐺 ) → ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) |
| 32 |
25
|
gsumwcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 |
24 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 |
1 25
|
symgbasf1o |
⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 37 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 38 |
4 37
|
syl |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑇 ) |
| 39 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 𝐿 ) ) |
| 40 |
7 39
|
eleqtrrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 41 |
38 40
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ 𝑇 ) |
| 42 |
26 41
|
sselid |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) |
| 43 |
1 25
|
symgbasf1o |
⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ) |
| 46 |
1 25
|
symgsssg |
⊢ ( 𝐷 ∈ 𝑉 → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 47 |
|
subgsubm |
⊢ ( { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubGrp ‘ 𝐺 ) → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 48 |
3 46 47
|
3syl |
⊢ ( 𝜑 → { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ) |
| 49 |
|
fzossfz |
⊢ ( 0 ..^ 𝐿 ) ⊆ ( 0 ... 𝐿 ) |
| 50 |
49 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... 𝐿 ) ) |
| 51 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... 𝐿 ) ) |
| 52 |
50 51
|
eleqtrrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 53 |
|
pfxmpt |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐼 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐼 ) = ( 𝑠 ∈ ( 0 ..^ 𝐼 ) ↦ ( 𝑊 ‘ 𝑠 ) ) ) |
| 54 |
4 52 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) = ( 𝑠 ∈ ( 0 ..^ 𝐼 ) ↦ ( 𝑊 ‘ 𝑠 ) ) ) |
| 55 |
|
difeq1 |
⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( 𝑗 ∖ I ) = ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 56 |
55
|
dmeqd |
⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → dom ( 𝑗 ∖ I ) = dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 57 |
56
|
sseq1d |
⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 58 |
|
disj2 |
⊢ ( ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) |
| 59 |
|
disjsn |
⊢ ( ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 60 |
58 59
|
bitr3i |
⊢ ( dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 61 |
57 60
|
bitrdi |
⊢ ( 𝑗 = ( 𝑊 ‘ 𝑠 ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 62 |
|
elfzuz3 |
⊢ ( 𝐼 ∈ ( 0 ... 𝐿 ) → 𝐿 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 63 |
50 62
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 64 |
6 63
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐼 ) ) |
| 65 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐼 ) → ( 0 ..^ 𝐼 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐼 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 67 |
66
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 68 |
38
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑠 ) ∈ 𝑇 ) |
| 69 |
26 68
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 70 |
67 69
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝑊 ‘ 𝑠 ) ∈ ( Base ‘ 𝐺 ) ) |
| 71 |
|
fveq2 |
⊢ ( 𝑘 = 𝑠 → ( 𝑊 ‘ 𝑘 ) = ( 𝑊 ‘ 𝑠 ) ) |
| 72 |
71
|
difeq1d |
⊢ ( 𝑘 = 𝑠 → ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 73 |
72
|
dmeqd |
⊢ ( 𝑘 = 𝑠 → dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 74 |
73
|
eleq2d |
⊢ ( 𝑘 = 𝑠 → ( 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 75 |
74
|
notbid |
⊢ ( 𝑘 = 𝑠 → ( ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) ) |
| 76 |
75
|
cbvralvw |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑘 ) ∖ I ) ↔ ∀ 𝑠 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 77 |
9 76
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 ..^ 𝐼 ) ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 78 |
77
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝑠 ) ∖ I ) ) |
| 79 |
61 70 78
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 ..^ 𝐼 ) ) → ( 𝑊 ‘ 𝑠 ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 80 |
54 79
|
fmpt3d |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 82 |
|
iswrdi |
⊢ ( ( 𝑊 prefix 𝐼 ) : ( 0 ..^ 𝐼 ) ⟶ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 84 |
|
gsumwsubmcl |
⊢ ( ( { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝐼 ) ∈ Word { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 85 |
48 83 84
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ) |
| 86 |
|
difeq1 |
⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → ( 𝑗 ∖ I ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 87 |
86
|
dmeqd |
⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → dom ( 𝑗 ∖ I ) = dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 88 |
87
|
sseq1d |
⊢ ( 𝑗 = ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) → ( dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 89 |
88
|
elrab |
⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } ↔ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ∧ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) ) |
| 90 |
89
|
simprbi |
⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) |
| 91 |
|
disj2 |
⊢ ( ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ) |
| 92 |
|
disjsn |
⊢ ( ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 93 |
91 92
|
bitr3i |
⊢ ( dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊆ ( V ∖ { 𝐴 } ) ↔ ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 94 |
90 93
|
sylib |
⊢ ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ { 𝑗 ∈ ( Base ‘ 𝐺 ) ∣ dom ( 𝑗 ∖ I ) ⊆ ( V ∖ { 𝐴 } ) } → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 95 |
85 94
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ) |
| 96 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) |
| 97 |
95 96
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) |
| 98 |
97
|
olcd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ∨ ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) ) |
| 99 |
|
excxor |
⊢ ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ↔ ( ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ∨ ( ¬ 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ∧ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) ) |
| 100 |
98 99
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) |
| 101 |
|
f1omvdco3 |
⊢ ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) : 𝐷 –1-1-onto→ 𝐷 ∧ ( 𝑊 ‘ 𝐼 ) : 𝐷 –1-1-onto→ 𝐷 ∧ ( 𝐴 ∈ dom ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∖ I ) ⊻ 𝐴 ∈ dom ( ( 𝑊 ‘ 𝐼 ) ∖ I ) ) ) → 𝐴 ∈ dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 102 |
36 45 100 101
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 103 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) ↔ ( 𝐼 ∈ ℕ0 ∧ 𝐿 ∈ ℕ ∧ 𝐼 < 𝐿 ) ) |
| 104 |
103
|
simp2bi |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐿 ∈ ℕ ) |
| 105 |
7 104
|
syl |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 106 |
6 105
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 107 |
|
wrdfin |
⊢ ( 𝑊 ∈ Word 𝑇 → 𝑊 ∈ Fin ) |
| 108 |
|
hashnncl |
⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 109 |
4 107 108
|
3syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
| 110 |
106 109
|
mpbid |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 ≠ ∅ ) |
| 112 |
|
pfxlswccat |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = 𝑊 ) |
| 113 |
112
|
eqcomd |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑊 ≠ ∅ ) → 𝑊 = ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) ) |
| 114 |
4 111 113
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 = ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) ) |
| 115 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝐿 − 1 ) ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 𝐿 − 1 ) ) |
| 117 |
105
|
nncnd |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 118 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 119 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℤ ) |
| 120 |
7 119
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ℤ ) |
| 121 |
120
|
zcnd |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
| 122 |
117 118 121
|
subadd2d |
⊢ ( 𝜑 → ( ( 𝐿 − 1 ) = 𝐼 ↔ ( 𝐼 + 1 ) = 𝐿 ) ) |
| 123 |
122
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐿 − 1 ) = 𝐼 ) |
| 124 |
116 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) |
| 125 |
|
oveq2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 prefix 𝐼 ) ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 prefix 𝐼 ) ) |
| 127 |
|
lsw |
⊢ ( 𝑊 ∈ Word 𝑇 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 128 |
4 127
|
syl |
⊢ ( 𝜑 → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 129 |
|
fveq2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| 130 |
128 129
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 131 |
130
|
s1eqd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → 〈“ ( lastS ‘ 𝑊 ) ”〉 = 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) |
| 132 |
126 131
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝐼 ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 133 |
124 132
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝑊 prefix ( ( ♯ ‘ 𝑊 ) − 1 ) ) ++ 〈“ ( lastS ‘ 𝑊 ) ”〉 ) = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 134 |
114 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝑊 = ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) |
| 135 |
134
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 136 |
42
|
s1cld |
⊢ ( 𝜑 → 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ∈ Word ( Base ‘ 𝐺 ) ) |
| 137 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 138 |
25 137
|
gsumccat |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑊 prefix 𝐼 ) ∈ Word ( Base ‘ 𝐺 ) ∧ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ∈ Word ( Base ‘ 𝐺 ) ) → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 139 |
24 31 136 138
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg ( ( 𝑊 prefix 𝐼 ) ++ 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) ) |
| 141 |
25
|
gsumws1 |
⊢ ( ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 142 |
42 141
|
syl |
⊢ ( 𝜑 → ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 143 |
142
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) ) |
| 144 |
1 25 137
|
symgov |
⊢ ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑊 ‘ 𝐼 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 145 |
33 42 144
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝑊 ‘ 𝐼 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 146 |
143 145
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg 〈“ ( 𝑊 ‘ 𝐼 ) ”〉 ) ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 148 |
135 140 147
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( 𝐺 Σg 𝑊 ) = ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ) |
| 149 |
148
|
difeq1d |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → ( ( 𝐺 Σg 𝑊 ) ∖ I ) = ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 150 |
149
|
dmeqd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) = dom ( ( ( 𝐺 Σg ( 𝑊 prefix 𝐼 ) ) ∘ ( 𝑊 ‘ 𝐼 ) ) ∖ I ) ) |
| 151 |
102 150
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝐼 + 1 ) = 𝐿 ) → 𝐴 ∈ dom ( ( 𝐺 Σg 𝑊 ) ∖ I ) ) |
| 152 |
21 151
|
mtand |
⊢ ( 𝜑 → ¬ ( 𝐼 + 1 ) = 𝐿 ) |
| 153 |
|
fzostep1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∨ ( 𝐼 + 1 ) = 𝐿 ) ) |
| 154 |
7 153
|
syl |
⊢ ( 𝜑 → ( ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ∨ ( 𝐼 + 1 ) = 𝐿 ) ) |
| 155 |
154
|
ord |
⊢ ( 𝜑 → ( ¬ ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) → ( 𝐼 + 1 ) = 𝐿 ) ) |
| 156 |
152 155
|
mt3d |
⊢ ( 𝜑 → ( 𝐼 + 1 ) ∈ ( 0 ..^ 𝐿 ) ) |