Metamath Proof Explorer


Theorem psgnunilem5

Description: Lemma for psgnuni . It is impossible to shift a transposition off the end because if the active transposition is at the right end, it is the only transposition moving A in contradiction to this being a representation of the identity. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016) (Proof shortened by AV, 12-Oct-2022)

Ref Expression
Hypotheses psgnunilem2.g G=SymGrpD
psgnunilem2.t T=ranpmTrspD
psgnunilem2.d φDV
psgnunilem2.w φWWordT
psgnunilem2.id φGW=ID
psgnunilem2.l φW=L
psgnunilem2.ix φI0..^L
psgnunilem2.a φAdomWII
psgnunilem2.al φk0..^I¬AdomWkI
Assertion psgnunilem5 φI+10..^L

Proof

Step Hyp Ref Expression
1 psgnunilem2.g G=SymGrpD
2 psgnunilem2.t T=ranpmTrspD
3 psgnunilem2.d φDV
4 psgnunilem2.w φWWordT
5 psgnunilem2.id φGW=ID
6 psgnunilem2.l φW=L
7 psgnunilem2.ix φI0..^L
8 psgnunilem2.a φAdomWII
9 psgnunilem2.al φk0..^I¬AdomWkI
10 noel ¬A
11 5 difeq1d φGWI=IDI
12 11 dmeqd φdomGWI=domIDI
13 resss IDI
14 ssdif0 IDIIDI=
15 13 14 mpbi IDI=
16 15 dmeqi domIDI=dom
17 dm0 dom=
18 16 17 eqtri domIDI=
19 12 18 eqtrdi φdomGWI=
20 19 eleq2d φAdomGWIA
21 10 20 mtbiri φ¬AdomGWI
22 1 symggrp DVGGrp
23 grpmnd GGrpGMnd
24 3 22 23 3syl φGMnd
25 eqid BaseG=BaseG
26 2 1 25 symgtrf TBaseG
27 sswrd TBaseGWordTWordBaseG
28 26 27 mp1i φWordTWordBaseG
29 28 4 sseldd φWWordBaseG
30 pfxcl WWordBaseGWprefixIWordBaseG
31 29 30 syl φWprefixIWordBaseG
32 25 gsumwcl GMndWprefixIWordBaseGGWprefixIBaseG
33 24 31 32 syl2anc φGWprefixIBaseG
34 1 25 symgbasf1o GWprefixIBaseGGWprefixI:D1-1 ontoD
35 33 34 syl φGWprefixI:D1-1 ontoD
36 35 adantr φI+1=LGWprefixI:D1-1 ontoD
37 wrdf WWordTW:0..^WT
38 4 37 syl φW:0..^WT
39 6 oveq2d φ0..^W=0..^L
40 7 39 eleqtrrd φI0..^W
41 38 40 ffvelcdmd φWIT
42 26 41 sselid φWIBaseG
43 1 25 symgbasf1o WIBaseGWI:D1-1 ontoD
44 42 43 syl φWI:D1-1 ontoD
45 44 adantr φI+1=LWI:D1-1 ontoD
46 1 25 symgsssg DVjBaseG|domjIVASubGrpG
47 subgsubm jBaseG|domjIVASubGrpGjBaseG|domjIVASubMndG
48 3 46 47 3syl φjBaseG|domjIVASubMndG
49 fzossfz 0..^L0L
50 49 7 sselid φI0L
51 6 oveq2d φ0W=0L
52 50 51 eleqtrrd φI0W
53 pfxmpt WWordTI0WWprefixI=s0..^IWs
54 4 52 53 syl2anc φWprefixI=s0..^IWs
55 difeq1 j=WsjI=WsI
56 55 dmeqd j=WsdomjI=domWsI
57 56 sseq1d j=WsdomjIVAdomWsIVA
58 disj2 domWsIA=domWsIVA
59 disjsn domWsIA=¬AdomWsI
60 58 59 bitr3i domWsIVA¬AdomWsI
61 57 60 bitrdi j=WsdomjIVA¬AdomWsI
62 elfzuz3 I0LLI
63 50 62 syl φLI
64 6 63 eqeltrd φWI
65 fzoss2 WI0..^I0..^W
66 64 65 syl φ0..^I0..^W
67 66 sselda φs0..^Is0..^W
68 38 ffvelcdmda φs0..^WWsT
69 26 68 sselid φs0..^WWsBaseG
70 67 69 syldan φs0..^IWsBaseG
71 fveq2 k=sWk=Ws
72 71 difeq1d k=sWkI=WsI
73 72 dmeqd k=sdomWkI=domWsI
74 73 eleq2d k=sAdomWkIAdomWsI
75 74 notbid k=s¬AdomWkI¬AdomWsI
76 75 cbvralvw k0..^I¬AdomWkIs0..^I¬AdomWsI
77 9 76 sylib φs0..^I¬AdomWsI
78 77 r19.21bi φs0..^I¬AdomWsI
79 61 70 78 elrabd φs0..^IWsjBaseG|domjIVA
80 54 79 fmpt3d φWprefixI:0..^IjBaseG|domjIVA
81 80 adantr φI+1=LWprefixI:0..^IjBaseG|domjIVA
82 iswrdi WprefixI:0..^IjBaseG|domjIVAWprefixIWordjBaseG|domjIVA
83 81 82 syl φI+1=LWprefixIWordjBaseG|domjIVA
84 gsumwsubmcl jBaseG|domjIVASubMndGWprefixIWordjBaseG|domjIVAGWprefixIjBaseG|domjIVA
85 48 83 84 syl2an2r φI+1=LGWprefixIjBaseG|domjIVA
86 difeq1 j=GWprefixIjI=GWprefixII
87 86 dmeqd j=GWprefixIdomjI=domGWprefixII
88 87 sseq1d j=GWprefixIdomjIVAdomGWprefixIIVA
89 88 elrab GWprefixIjBaseG|domjIVAGWprefixIBaseGdomGWprefixIIVA
90 89 simprbi GWprefixIjBaseG|domjIVAdomGWprefixIIVA
91 disj2 domGWprefixIIA=domGWprefixIIVA
92 disjsn domGWprefixIIA=¬AdomGWprefixII
93 91 92 bitr3i domGWprefixIIVA¬AdomGWprefixII
94 90 93 sylib GWprefixIjBaseG|domjIVA¬AdomGWprefixII
95 85 94 syl φI+1=L¬AdomGWprefixII
96 8 adantr φI+1=LAdomWII
97 95 96 jca φI+1=L¬AdomGWprefixIIAdomWII
98 97 olcd φI+1=LAdomGWprefixII¬AdomWII¬AdomGWprefixIIAdomWII
99 excxor AdomGWprefixIIAdomWIIAdomGWprefixII¬AdomWII¬AdomGWprefixIIAdomWII
100 98 99 sylibr φI+1=LAdomGWprefixIIAdomWII
101 f1omvdco3 GWprefixI:D1-1 ontoDWI:D1-1 ontoDAdomGWprefixIIAdomWIIAdomGWprefixIWII
102 36 45 100 101 syl3anc φI+1=LAdomGWprefixIWII
103 elfzo0 I0..^LI0LI<L
104 103 simp2bi I0..^LL
105 7 104 syl φL
106 6 105 eqeltrd φW
107 wrdfin WWordTWFin
108 hashnncl WFinWW
109 4 107 108 3syl φWW
110 106 109 mpbid φW
111 110 adantr φI+1=LW
112 pfxlswccat WWordTWWprefixW1++⟨“lastSW”⟩=W
113 112 eqcomd WWordTWW=WprefixW1++⟨“lastSW”⟩
114 4 111 113 syl2an2r φI+1=LW=WprefixW1++⟨“lastSW”⟩
115 6 oveq1d φW1=L1
116 115 adantr φI+1=LW1=L1
117 105 nncnd φL
118 1cnd φ1
119 elfzoelz I0..^LI
120 7 119 syl φI
121 120 zcnd φI
122 117 118 121 subadd2d φL1=II+1=L
123 122 biimpar φI+1=LL1=I
124 116 123 eqtrd φI+1=LW1=I
125 oveq2 W1=IWprefixW1=WprefixI
126 125 adantl φW1=IWprefixW1=WprefixI
127 lsw WWordTlastSW=WW1
128 4 127 syl φlastSW=WW1
129 fveq2 W1=IWW1=WI
130 128 129 sylan9eq φW1=IlastSW=WI
131 130 s1eqd φW1=I⟨“lastSW”⟩=⟨“WI”⟩
132 126 131 oveq12d φW1=IWprefixW1++⟨“lastSW”⟩=WprefixI++⟨“WI”⟩
133 124 132 syldan φI+1=LWprefixW1++⟨“lastSW”⟩=WprefixI++⟨“WI”⟩
134 114 133 eqtrd φI+1=LW=WprefixI++⟨“WI”⟩
135 134 oveq2d φI+1=LGW=GWprefixI++⟨“WI”⟩
136 42 s1cld φ⟨“WI”⟩WordBaseG
137 eqid +G=+G
138 25 137 gsumccat GMndWprefixIWordBaseG⟨“WI”⟩WordBaseGGWprefixI++⟨“WI”⟩=GWprefixI+GG⟨“WI”⟩
139 24 31 136 138 syl3anc φGWprefixI++⟨“WI”⟩=GWprefixI+GG⟨“WI”⟩
140 139 adantr φI+1=LGWprefixI++⟨“WI”⟩=GWprefixI+GG⟨“WI”⟩
141 25 gsumws1 WIBaseGG⟨“WI”⟩=WI
142 42 141 syl φG⟨“WI”⟩=WI
143 142 oveq2d φGWprefixI+GG⟨“WI”⟩=GWprefixI+GWI
144 1 25 137 symgov GWprefixIBaseGWIBaseGGWprefixI+GWI=GWprefixIWI
145 33 42 144 syl2anc φGWprefixI+GWI=GWprefixIWI
146 143 145 eqtrd φGWprefixI+GG⟨“WI”⟩=GWprefixIWI
147 146 adantr φI+1=LGWprefixI+GG⟨“WI”⟩=GWprefixIWI
148 135 140 147 3eqtrd φI+1=LGW=GWprefixIWI
149 148 difeq1d φI+1=LGWI=GWprefixIWII
150 149 dmeqd φI+1=LdomGWI=domGWprefixIWII
151 102 150 eleqtrrd φI+1=LAdomGWI
152 21 151 mtand φ¬I+1=L
153 fzostep1 I0..^LI+10..^LI+1=L
154 7 153 syl φI+10..^LI+1=L
155 154 ord φ¬I+10..^LI+1=L
156 152 155 mt3d φI+10..^L