| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem2.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnunilem2.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnunilem2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | psgnunilem2.w |  |-  ( ph -> W e. Word T ) | 
						
							| 5 |  | psgnunilem2.id |  |-  ( ph -> ( G gsum W ) = ( _I |` D ) ) | 
						
							| 6 |  | psgnunilem2.l |  |-  ( ph -> ( # ` W ) = L ) | 
						
							| 7 |  | psgnunilem2.ix |  |-  ( ph -> I e. ( 0 ..^ L ) ) | 
						
							| 8 |  | psgnunilem2.a |  |-  ( ph -> A e. dom ( ( W ` I ) \ _I ) ) | 
						
							| 9 |  | psgnunilem2.al |  |-  ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) | 
						
							| 10 |  | psgnunilem2.in |  |-  ( ph -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 11 |  | wrd0 |  |-  (/) e. Word T | 
						
							| 12 |  | splcl |  |-  ( ( W e. Word T /\ (/) e. Word T ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) | 
						
							| 13 | 4 11 12 | sylancl |  |-  ( ph -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) | 
						
							| 15 |  | fzossfz |  |-  ( 0 ..^ L ) C_ ( 0 ... L ) | 
						
							| 16 | 15 7 | sselid |  |-  ( ph -> I e. ( 0 ... L ) ) | 
						
							| 17 |  | elfznn0 |  |-  ( I e. ( 0 ... L ) -> I e. NN0 ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> I e. NN0 ) | 
						
							| 19 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 20 |  | nn0addcl |  |-  ( ( I e. NN0 /\ 2 e. NN0 ) -> ( I + 2 ) e. NN0 ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( ph -> ( I + 2 ) e. NN0 ) | 
						
							| 22 | 18 | nn0red |  |-  ( ph -> I e. RR ) | 
						
							| 23 |  | nn0addge1 |  |-  ( ( I e. RR /\ 2 e. NN0 ) -> I <_ ( I + 2 ) ) | 
						
							| 24 | 22 19 23 | sylancl |  |-  ( ph -> I <_ ( I + 2 ) ) | 
						
							| 25 |  | elfz2nn0 |  |-  ( I e. ( 0 ... ( I + 2 ) ) <-> ( I e. NN0 /\ ( I + 2 ) e. NN0 /\ I <_ ( I + 2 ) ) ) | 
						
							| 26 | 18 21 24 25 | syl3anbrc |  |-  ( ph -> I e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 27 | 1 2 3 4 5 6 7 8 9 | psgnunilem5 |  |-  ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) | 
						
							| 28 |  | fzofzp1 |  |-  ( ( I + 1 ) e. ( 0 ..^ L ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) | 
						
							| 30 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 31 | 30 | oveq2i |  |-  ( I + 2 ) = ( I + ( 1 + 1 ) ) | 
						
							| 32 | 18 | nn0cnd |  |-  ( ph -> I e. CC ) | 
						
							| 33 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 34 | 32 33 33 | addassd |  |-  ( ph -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) | 
						
							| 35 | 31 34 | eqtr4id |  |-  ( ph -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) | 
						
							| 36 | 6 | oveq2d |  |-  ( ph -> ( 0 ... ( # ` W ) ) = ( 0 ... L ) ) | 
						
							| 37 | 29 35 36 | 3eltr4d |  |-  ( ph -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 38 | 11 | a1i |  |-  ( ph -> (/) e. Word T ) | 
						
							| 39 | 4 26 37 38 | spllen |  |-  ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) ) | 
						
							| 40 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 41 | 40 | oveq1i |  |-  ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = ( 0 - ( ( I + 2 ) - I ) ) | 
						
							| 42 |  | df-neg |  |-  -u ( ( I + 2 ) - I ) = ( 0 - ( ( I + 2 ) - I ) ) | 
						
							| 43 | 41 42 | eqtr4i |  |-  ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u ( ( I + 2 ) - I ) | 
						
							| 44 |  | 2cn |  |-  2 e. CC | 
						
							| 45 |  | pncan2 |  |-  ( ( I e. CC /\ 2 e. CC ) -> ( ( I + 2 ) - I ) = 2 ) | 
						
							| 46 | 32 44 45 | sylancl |  |-  ( ph -> ( ( I + 2 ) - I ) = 2 ) | 
						
							| 47 | 46 | negeqd |  |-  ( ph -> -u ( ( I + 2 ) - I ) = -u 2 ) | 
						
							| 48 | 43 47 | eqtrid |  |-  ( ph -> ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u 2 ) | 
						
							| 49 | 6 48 | oveq12d |  |-  ( ph -> ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) = ( L + -u 2 ) ) | 
						
							| 50 |  | elfzel2 |  |-  ( I e. ( 0 ... L ) -> L e. ZZ ) | 
						
							| 51 | 16 50 | syl |  |-  ( ph -> L e. ZZ ) | 
						
							| 52 | 51 | zcnd |  |-  ( ph -> L e. CC ) | 
						
							| 53 |  | negsub |  |-  ( ( L e. CC /\ 2 e. CC ) -> ( L + -u 2 ) = ( L - 2 ) ) | 
						
							| 54 | 52 44 53 | sylancl |  |-  ( ph -> ( L + -u 2 ) = ( L - 2 ) ) | 
						
							| 55 | 39 49 54 | 3eqtrd |  |-  ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) | 
						
							| 57 |  | splid |  |-  ( ( W e. Word T /\ ( I e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) | 
						
							| 58 | 4 26 37 57 | syl12anc |  |-  ( ph -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ph -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) | 
						
							| 61 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 62 | 1 | symggrp |  |-  ( D e. V -> G e. Grp ) | 
						
							| 63 | 3 62 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 64 | 63 | grpmndd |  |-  ( ph -> G e. Mnd ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> G e. Mnd ) | 
						
							| 66 | 2 1 61 | symgtrf |  |-  T C_ ( Base ` G ) | 
						
							| 67 |  | sswrd |  |-  ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) | 
						
							| 68 | 66 67 | ax-mp |  |-  Word T C_ Word ( Base ` G ) | 
						
							| 69 | 68 4 | sselid |  |-  ( ph -> W e. Word ( Base ` G ) ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> W e. Word ( Base ` G ) ) | 
						
							| 71 | 26 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> I e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 72 | 37 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 73 |  | swrdcl |  |-  ( W e. Word ( Base ` G ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) | 
						
							| 74 | 69 73 | syl |  |-  ( ph -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) | 
						
							| 76 |  | wrd0 |  |-  (/) e. Word ( Base ` G ) | 
						
							| 77 | 76 | a1i |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> (/) e. Word ( Base ` G ) ) | 
						
							| 78 | 6 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ L ) ) | 
						
							| 79 | 27 78 | eleqtrrd |  |-  ( ph -> ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 80 |  | swrds2 |  |-  ( ( W e. Word T /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) | 
						
							| 81 | 4 18 79 80 | syl3anc |  |-  ( ph -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) ) | 
						
							| 83 |  | wrdf |  |-  ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 84 | 4 83 | syl |  |-  ( ph -> W : ( 0 ..^ ( # ` W ) ) --> T ) | 
						
							| 85 | 78 | feq2d |  |-  ( ph -> ( W : ( 0 ..^ ( # ` W ) ) --> T <-> W : ( 0 ..^ L ) --> T ) ) | 
						
							| 86 | 84 85 | mpbid |  |-  ( ph -> W : ( 0 ..^ L ) --> T ) | 
						
							| 87 | 86 7 | ffvelcdmd |  |-  ( ph -> ( W ` I ) e. T ) | 
						
							| 88 | 66 87 | sselid |  |-  ( ph -> ( W ` I ) e. ( Base ` G ) ) | 
						
							| 89 | 86 27 | ffvelcdmd |  |-  ( ph -> ( W ` ( I + 1 ) ) e. T ) | 
						
							| 90 | 66 89 | sselid |  |-  ( ph -> ( W ` ( I + 1 ) ) e. ( Base ` G ) ) | 
						
							| 91 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 92 | 61 91 | gsumws2 |  |-  ( ( G e. Mnd /\ ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) | 
						
							| 93 | 64 88 90 92 | syl3anc |  |-  ( ph -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) | 
						
							| 94 | 1 61 91 | symgov |  |-  ( ( ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) | 
						
							| 95 | 88 90 94 | syl2anc |  |-  ( ph -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) | 
						
							| 96 | 82 93 95 | 3eqtrd |  |-  ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) | 
						
							| 98 |  | simpr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) | 
						
							| 99 | 1 | symgid |  |-  ( D e. V -> ( _I |` D ) = ( 0g ` G ) ) | 
						
							| 100 | 3 99 | syl |  |-  ( ph -> ( _I |` D ) = ( 0g ` G ) ) | 
						
							| 101 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 102 | 101 | gsum0 |  |-  ( G gsum (/) ) = ( 0g ` G ) | 
						
							| 103 | 100 102 | eqtr4di |  |-  ( ph -> ( _I |` D ) = ( G gsum (/) ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( _I |` D ) = ( G gsum (/) ) ) | 
						
							| 105 | 97 98 104 | 3eqtrd |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum (/) ) ) | 
						
							| 106 | 61 65 70 71 72 75 77 105 | gsumspl |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) | 
						
							| 107 | 5 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum W ) = ( _I |` D ) ) | 
						
							| 108 | 60 106 107 | 3eqtr3d |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) | 
						
							| 109 |  | fveqeq2 |  |-  ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( # ` x ) = ( L - 2 ) <-> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) ) | 
						
							| 110 |  | oveq2 |  |-  ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( G gsum x ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) | 
						
							| 111 | 110 | eqeq1d |  |-  ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) | 
						
							| 112 | 109 111 | anbi12d |  |-  ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) ) | 
						
							| 113 | 112 | rspcev |  |-  ( ( ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T /\ ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 114 | 14 56 108 113 | syl12anc |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 115 | 10 | adantr |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 116 | 114 115 | pm2.21dd |  |-  ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) | 
						
							| 117 | 116 | ex |  |-  ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) | 
						
							| 118 | 4 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> W e. Word T ) | 
						
							| 119 |  | simprl |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. T ) | 
						
							| 120 |  | simprr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. T ) | 
						
							| 121 | 119 120 | s2cld |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word T ) | 
						
							| 122 |  | splcl |  |-  ( ( W e. Word T /\ <" r s "> e. Word T ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) | 
						
							| 123 | 118 121 122 | syl2anc |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) | 
						
							| 124 | 123 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) | 
						
							| 125 | 64 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> G e. Mnd ) | 
						
							| 126 | 69 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> W e. Word ( Base ` G ) ) | 
						
							| 127 | 26 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> I e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 128 | 37 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 129 | 68 121 | sselid |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word ( Base ` G ) ) | 
						
							| 130 | 129 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> <" r s "> e. Word ( Base ` G ) ) | 
						
							| 131 | 74 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) | 
						
							| 132 |  | simprr1 |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) ) | 
						
							| 133 | 96 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) | 
						
							| 134 | 64 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> G e. Mnd ) | 
						
							| 135 | 66 | a1i |  |-  ( ph -> T C_ ( Base ` G ) ) | 
						
							| 136 | 135 | sselda |  |-  ( ( ph /\ r e. T ) -> r e. ( Base ` G ) ) | 
						
							| 137 | 136 | adantrr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. ( Base ` G ) ) | 
						
							| 138 | 135 | sselda |  |-  ( ( ph /\ s e. T ) -> s e. ( Base ` G ) ) | 
						
							| 139 | 138 | adantrl |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. ( Base ` G ) ) | 
						
							| 140 | 61 91 | gsumws2 |  |-  ( ( G e. Mnd /\ r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) | 
						
							| 141 | 134 137 139 140 | syl3anc |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) | 
						
							| 142 | 1 61 91 | symgov |  |-  ( ( r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) | 
						
							| 143 | 137 139 142 | syl2anc |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) | 
						
							| 144 | 141 143 | eqtrd |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) | 
						
							| 145 | 144 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) | 
						
							| 146 | 132 133 145 | 3eqtr4rd |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) ) | 
						
							| 147 | 61 125 126 127 128 130 131 146 | gsumspl |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) ) | 
						
							| 148 | 59 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) | 
						
							| 149 | 5 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum W ) = ( _I |` D ) ) | 
						
							| 150 | 147 148 149 | 3eqtrd |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) | 
						
							| 151 | 26 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> I e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 152 | 37 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 153 | 118 151 152 121 | spllen |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) ) | 
						
							| 154 |  | s2len |  |-  ( # ` <" r s "> ) = 2 | 
						
							| 155 | 154 | oveq1i |  |-  ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = ( 2 - ( ( I + 2 ) - I ) ) | 
						
							| 156 | 46 | oveq2d |  |-  ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = ( 2 - 2 ) ) | 
						
							| 157 | 44 | subidi |  |-  ( 2 - 2 ) = 0 | 
						
							| 158 | 156 157 | eqtrdi |  |-  ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = 0 ) | 
						
							| 159 | 155 158 | eqtrid |  |-  ( ph -> ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = 0 ) | 
						
							| 160 | 159 | oveq2d |  |-  ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = ( ( # ` W ) + 0 ) ) | 
						
							| 161 | 6 52 | eqeltrd |  |-  ( ph -> ( # ` W ) e. CC ) | 
						
							| 162 | 161 | addridd |  |-  ( ph -> ( ( # ` W ) + 0 ) = ( # ` W ) ) | 
						
							| 163 | 160 162 6 | 3eqtrd |  |-  ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) | 
						
							| 165 | 153 164 | eqtrd |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) | 
						
							| 166 | 165 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) | 
						
							| 167 | 150 166 | jca |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) | 
						
							| 168 | 27 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 1 ) e. ( 0 ..^ L ) ) | 
						
							| 169 |  | simprr2 |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( s \ _I ) ) | 
						
							| 170 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 171 |  | 2nn |  |-  2 e. NN | 
						
							| 172 |  | 1lt2 |  |-  1 < 2 | 
						
							| 173 |  | elfzo0 |  |-  ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) | 
						
							| 174 | 170 171 172 173 | mpbir3an |  |-  1 e. ( 0 ..^ 2 ) | 
						
							| 175 | 154 | oveq2i |  |-  ( 0 ..^ ( # ` <" r s "> ) ) = ( 0 ..^ 2 ) | 
						
							| 176 | 174 175 | eleqtrri |  |-  1 e. ( 0 ..^ ( # ` <" r s "> ) ) | 
						
							| 177 | 176 | a1i |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> 1 e. ( 0 ..^ ( # ` <" r s "> ) ) ) | 
						
							| 178 | 118 151 152 121 177 | splfv2a |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = ( <" r s "> ` 1 ) ) | 
						
							| 179 |  | s2fv1 |  |-  ( s e. T -> ( <" r s "> ` 1 ) = s ) | 
						
							| 180 | 179 | ad2antll |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 1 ) = s ) | 
						
							| 181 | 178 180 | eqtrd |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) | 
						
							| 182 | 181 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) | 
						
							| 183 | 182 | difeq1d |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = ( s \ _I ) ) | 
						
							| 184 | 183 | dmeqd |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = dom ( s \ _I ) ) | 
						
							| 185 | 169 184 | eleqtrrd |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) | 
						
							| 186 |  | fzosplitsni |  |-  ( I e. ( ZZ>= ` 0 ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) | 
						
							| 187 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 188 | 186 187 | eleq2s |  |-  ( I e. NN0 -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) | 
						
							| 189 | 18 188 | syl |  |-  ( ph -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) | 
						
							| 190 | 189 | adantr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) | 
						
							| 191 |  | fveq2 |  |-  ( k = j -> ( W ` k ) = ( W ` j ) ) | 
						
							| 192 | 191 | difeq1d |  |-  ( k = j -> ( ( W ` k ) \ _I ) = ( ( W ` j ) \ _I ) ) | 
						
							| 193 | 192 | dmeqd |  |-  ( k = j -> dom ( ( W ` k ) \ _I ) = dom ( ( W ` j ) \ _I ) ) | 
						
							| 194 | 193 | eleq2d |  |-  ( k = j -> ( A e. dom ( ( W ` k ) \ _I ) <-> A e. dom ( ( W ` j ) \ _I ) ) ) | 
						
							| 195 | 194 | notbid |  |-  ( k = j -> ( -. A e. dom ( ( W ` k ) \ _I ) <-> -. A e. dom ( ( W ` j ) \ _I ) ) ) | 
						
							| 196 | 195 | rspccva |  |-  ( ( A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) | 
						
							| 197 | 9 196 | sylan |  |-  ( ( ph /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) | 
						
							| 198 | 197 | adantlr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) | 
						
							| 199 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> W e. Word T ) | 
						
							| 200 | 26 | ad2antrr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> I e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 201 | 37 | ad2antrr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 202 | 121 | adantr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> <" r s "> e. Word T ) | 
						
							| 203 |  | simpr |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> j e. ( 0 ..^ I ) ) | 
						
							| 204 | 199 200 201 202 203 | splfv1 |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( W ` j ) ) | 
						
							| 205 | 204 | difeq1d |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( W ` j ) \ _I ) ) | 
						
							| 206 | 205 | dmeqd |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( W ` j ) \ _I ) ) | 
						
							| 207 | 198 206 | neleqtrrd |  |-  ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) | 
						
							| 208 | 207 | ex |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 209 | 208 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 210 |  | simprr3 |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( r \ _I ) ) | 
						
							| 211 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 212 |  | 2pos |  |-  0 < 2 | 
						
							| 213 |  | elfzo0 |  |-  ( 0 e. ( 0 ..^ 2 ) <-> ( 0 e. NN0 /\ 2 e. NN /\ 0 < 2 ) ) | 
						
							| 214 | 211 171 212 213 | mpbir3an |  |-  0 e. ( 0 ..^ 2 ) | 
						
							| 215 | 214 175 | eleqtrri |  |-  0 e. ( 0 ..^ ( # ` <" r s "> ) ) | 
						
							| 216 | 215 | a1i |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> 0 e. ( 0 ..^ ( # ` <" r s "> ) ) ) | 
						
							| 217 | 118 151 152 121 216 | splfv2a |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( <" r s "> ` 0 ) ) | 
						
							| 218 | 32 | addridd |  |-  ( ph -> ( I + 0 ) = I ) | 
						
							| 219 | 218 | adantr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 0 ) = I ) | 
						
							| 220 | 219 | fveq2d |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) | 
						
							| 221 |  | s2fv0 |  |-  ( r e. T -> ( <" r s "> ` 0 ) = r ) | 
						
							| 222 | 221 | ad2antrl |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 0 ) = r ) | 
						
							| 223 | 217 220 222 | 3eqtr3d |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) = r ) | 
						
							| 224 | 223 | difeq1d |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = ( r \ _I ) ) | 
						
							| 225 | 224 | dmeqd |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = dom ( r \ _I ) ) | 
						
							| 226 | 225 | eleq2d |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) | 
						
							| 227 | 226 | adantrr |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) | 
						
							| 228 | 210 227 | mtbird |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) | 
						
							| 229 |  | fveq2 |  |-  ( j = I -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) | 
						
							| 230 | 229 | difeq1d |  |-  ( j = I -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) | 
						
							| 231 | 230 | dmeqd |  |-  ( j = I -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) | 
						
							| 232 | 231 | eleq2d |  |-  ( j = I -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) | 
						
							| 233 | 232 | notbid |  |-  ( j = I -> ( -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) | 
						
							| 234 | 228 233 | syl5ibrcom |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j = I -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 235 | 209 234 | jaod |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( j e. ( 0 ..^ I ) \/ j = I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 236 | 190 235 | sylbid |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 237 | 236 | ralrimiv |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) | 
						
							| 238 | 168 185 237 | 3jca |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 239 |  | oveq2 |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( G gsum w ) = ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) ) | 
						
							| 240 | 239 | eqeq1d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) ) | 
						
							| 241 |  | fveqeq2 |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( # ` w ) = L <-> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) | 
						
							| 242 | 240 241 | anbi12d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) <-> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) ) | 
						
							| 243 |  | fveq1 |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` ( I + 1 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) ) | 
						
							| 244 | 243 | difeq1d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` ( I + 1 ) ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) | 
						
							| 245 | 244 | dmeqd |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` ( I + 1 ) ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) | 
						
							| 246 | 245 | eleq2d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` ( I + 1 ) ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) ) | 
						
							| 247 |  | fveq1 |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) ) | 
						
							| 248 | 247 | difeq1d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) | 
						
							| 249 | 248 | dmeqd |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) | 
						
							| 250 | 249 | eleq2d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 251 | 250 | notbid |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( -. A e. dom ( ( w ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 252 | 251 | ralbidv |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) <-> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) | 
						
							| 253 | 246 252 | 3anbi23d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) <-> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) | 
						
							| 254 | 242 253 | anbi12d |  |-  ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) <-> ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) ) | 
						
							| 255 | 254 | rspcev |  |-  ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T /\ ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) | 
						
							| 256 | 124 167 238 255 | syl12anc |  |-  ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) | 
						
							| 257 | 256 | expr |  |-  ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) | 
						
							| 258 | 257 | rexlimdvva |  |-  ( ph -> ( E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) | 
						
							| 259 | 2 3 87 89 8 | psgnunilem1 |  |-  ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) | 
						
							| 260 | 117 258 259 | mpjaod |  |-  ( ph -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |