Step |
Hyp |
Ref |
Expression |
1 |
|
psgnunilem2.g |
|- G = ( SymGrp ` D ) |
2 |
|
psgnunilem2.t |
|- T = ran ( pmTrsp ` D ) |
3 |
|
psgnunilem2.d |
|- ( ph -> D e. V ) |
4 |
|
psgnunilem2.w |
|- ( ph -> W e. Word T ) |
5 |
|
psgnunilem2.id |
|- ( ph -> ( G gsum W ) = ( _I |` D ) ) |
6 |
|
psgnunilem2.l |
|- ( ph -> ( # ` W ) = L ) |
7 |
|
psgnunilem2.ix |
|- ( ph -> I e. ( 0 ..^ L ) ) |
8 |
|
psgnunilem2.a |
|- ( ph -> A e. dom ( ( W ` I ) \ _I ) ) |
9 |
|
psgnunilem2.al |
|- ( ph -> A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) ) |
10 |
|
psgnunilem2.in |
|- ( ph -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
11 |
|
wrd0 |
|- (/) e. Word T |
12 |
|
splcl |
|- ( ( W e. Word T /\ (/) e. Word T ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
13 |
4 11 12
|
sylancl |
|- ( ph -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T ) |
15 |
|
fzossfz |
|- ( 0 ..^ L ) C_ ( 0 ... L ) |
16 |
15 7
|
sselid |
|- ( ph -> I e. ( 0 ... L ) ) |
17 |
|
elfznn0 |
|- ( I e. ( 0 ... L ) -> I e. NN0 ) |
18 |
16 17
|
syl |
|- ( ph -> I e. NN0 ) |
19 |
|
2nn0 |
|- 2 e. NN0 |
20 |
|
nn0addcl |
|- ( ( I e. NN0 /\ 2 e. NN0 ) -> ( I + 2 ) e. NN0 ) |
21 |
18 19 20
|
sylancl |
|- ( ph -> ( I + 2 ) e. NN0 ) |
22 |
18
|
nn0red |
|- ( ph -> I e. RR ) |
23 |
|
nn0addge1 |
|- ( ( I e. RR /\ 2 e. NN0 ) -> I <_ ( I + 2 ) ) |
24 |
22 19 23
|
sylancl |
|- ( ph -> I <_ ( I + 2 ) ) |
25 |
|
elfz2nn0 |
|- ( I e. ( 0 ... ( I + 2 ) ) <-> ( I e. NN0 /\ ( I + 2 ) e. NN0 /\ I <_ ( I + 2 ) ) ) |
26 |
18 21 24 25
|
syl3anbrc |
|- ( ph -> I e. ( 0 ... ( I + 2 ) ) ) |
27 |
1 2 3 4 5 6 7 8 9
|
psgnunilem5 |
|- ( ph -> ( I + 1 ) e. ( 0 ..^ L ) ) |
28 |
|
fzofzp1 |
|- ( ( I + 1 ) e. ( 0 ..^ L ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( ( I + 1 ) + 1 ) e. ( 0 ... L ) ) |
30 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
31 |
30
|
oveq2i |
|- ( I + 2 ) = ( I + ( 1 + 1 ) ) |
32 |
18
|
nn0cnd |
|- ( ph -> I e. CC ) |
33 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
34 |
32 33 33
|
addassd |
|- ( ph -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) |
35 |
31 34
|
eqtr4id |
|- ( ph -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) |
36 |
6
|
oveq2d |
|- ( ph -> ( 0 ... ( # ` W ) ) = ( 0 ... L ) ) |
37 |
29 35 36
|
3eltr4d |
|- ( ph -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
38 |
11
|
a1i |
|- ( ph -> (/) e. Word T ) |
39 |
4 26 37 38
|
spllen |
|- ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) ) |
40 |
|
hash0 |
|- ( # ` (/) ) = 0 |
41 |
40
|
oveq1i |
|- ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = ( 0 - ( ( I + 2 ) - I ) ) |
42 |
|
df-neg |
|- -u ( ( I + 2 ) - I ) = ( 0 - ( ( I + 2 ) - I ) ) |
43 |
41 42
|
eqtr4i |
|- ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u ( ( I + 2 ) - I ) |
44 |
|
2cn |
|- 2 e. CC |
45 |
|
pncan2 |
|- ( ( I e. CC /\ 2 e. CC ) -> ( ( I + 2 ) - I ) = 2 ) |
46 |
32 44 45
|
sylancl |
|- ( ph -> ( ( I + 2 ) - I ) = 2 ) |
47 |
46
|
negeqd |
|- ( ph -> -u ( ( I + 2 ) - I ) = -u 2 ) |
48 |
43 47
|
eqtrid |
|- ( ph -> ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) = -u 2 ) |
49 |
6 48
|
oveq12d |
|- ( ph -> ( ( # ` W ) + ( ( # ` (/) ) - ( ( I + 2 ) - I ) ) ) = ( L + -u 2 ) ) |
50 |
|
elfzel2 |
|- ( I e. ( 0 ... L ) -> L e. ZZ ) |
51 |
16 50
|
syl |
|- ( ph -> L e. ZZ ) |
52 |
51
|
zcnd |
|- ( ph -> L e. CC ) |
53 |
|
negsub |
|- ( ( L e. CC /\ 2 e. CC ) -> ( L + -u 2 ) = ( L - 2 ) ) |
54 |
52 44 53
|
sylancl |
|- ( ph -> ( L + -u 2 ) = ( L - 2 ) ) |
55 |
39 49 54
|
3eqtrd |
|- ( ph -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) |
57 |
|
splid |
|- ( ( W e. Word T /\ ( I e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) |
58 |
4 26 37 57
|
syl12anc |
|- ( ph -> ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) = W ) |
59 |
58
|
oveq2d |
|- ( ph -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
60 |
59
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
61 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
62 |
1
|
symggrp |
|- ( D e. V -> G e. Grp ) |
63 |
3 62
|
syl |
|- ( ph -> G e. Grp ) |
64 |
63
|
grpmndd |
|- ( ph -> G e. Mnd ) |
65 |
64
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> G e. Mnd ) |
66 |
2 1 61
|
symgtrf |
|- T C_ ( Base ` G ) |
67 |
|
sswrd |
|- ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) |
68 |
66 67
|
ax-mp |
|- Word T C_ Word ( Base ` G ) |
69 |
68 4
|
sselid |
|- ( ph -> W e. Word ( Base ` G ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> W e. Word ( Base ` G ) ) |
71 |
26
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
72 |
37
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
73 |
|
swrdcl |
|- ( W e. Word ( Base ` G ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
74 |
69 73
|
syl |
|- ( ph -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
75 |
74
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
76 |
|
wrd0 |
|- (/) e. Word ( Base ` G ) |
77 |
76
|
a1i |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> (/) e. Word ( Base ` G ) ) |
78 |
6
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ L ) ) |
79 |
27 78
|
eleqtrrd |
|- ( ph -> ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
80 |
|
swrds2 |
|- ( ( W e. Word T /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |
81 |
4 18 79 80
|
syl3anc |
|- ( ph -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |
82 |
81
|
oveq2d |
|- ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) ) |
83 |
|
wrdf |
|- ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
84 |
4 83
|
syl |
|- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
85 |
78
|
feq2d |
|- ( ph -> ( W : ( 0 ..^ ( # ` W ) ) --> T <-> W : ( 0 ..^ L ) --> T ) ) |
86 |
84 85
|
mpbid |
|- ( ph -> W : ( 0 ..^ L ) --> T ) |
87 |
86 7
|
ffvelrnd |
|- ( ph -> ( W ` I ) e. T ) |
88 |
66 87
|
sselid |
|- ( ph -> ( W ` I ) e. ( Base ` G ) ) |
89 |
86 27
|
ffvelrnd |
|- ( ph -> ( W ` ( I + 1 ) ) e. T ) |
90 |
66 89
|
sselid |
|- ( ph -> ( W ` ( I + 1 ) ) e. ( Base ` G ) ) |
91 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
92 |
61 91
|
gsumws2 |
|- ( ( G e. Mnd /\ ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) |
93 |
64 88 90 92
|
syl3anc |
|- ( ph -> ( G gsum <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) = ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) ) |
94 |
1 61 91
|
symgov |
|- ( ( ( W ` I ) e. ( Base ` G ) /\ ( W ` ( I + 1 ) ) e. ( Base ` G ) ) -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
95 |
88 90 94
|
syl2anc |
|- ( ph -> ( ( W ` I ) ( +g ` G ) ( W ` ( I + 1 ) ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
96 |
82 93 95
|
3eqtrd |
|- ( ph -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
97 |
96
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
98 |
|
simpr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) |
99 |
1
|
symgid |
|- ( D e. V -> ( _I |` D ) = ( 0g ` G ) ) |
100 |
3 99
|
syl |
|- ( ph -> ( _I |` D ) = ( 0g ` G ) ) |
101 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
102 |
101
|
gsum0 |
|- ( G gsum (/) ) = ( 0g ` G ) |
103 |
100 102
|
eqtr4di |
|- ( ph -> ( _I |` D ) = ( G gsum (/) ) ) |
104 |
103
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( _I |` D ) = ( G gsum (/) ) ) |
105 |
97 98 104
|
3eqtrd |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( G gsum (/) ) ) |
106 |
61 65 70 71 72 75 77 105
|
gsumspl |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) |
107 |
5
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum W ) = ( _I |` D ) ) |
108 |
60 106 107
|
3eqtr3d |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) |
109 |
|
fveqeq2 |
|- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( # ` x ) = ( L - 2 ) <-> ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) ) ) |
110 |
|
oveq2 |
|- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( G gsum x ) = ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) ) |
111 |
110
|
eqeq1d |
|- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) |
112 |
109 111
|
anbi12d |
|- ( x = ( W splice <. I , ( I + 2 ) , (/) >. ) -> ( ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) ) |
113 |
112
|
rspcev |
|- ( ( ( W splice <. I , ( I + 2 ) , (/) >. ) e. Word T /\ ( ( # ` ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( L - 2 ) /\ ( G gsum ( W splice <. I , ( I + 2 ) , (/) >. ) ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
114 |
14 56 108 113
|
syl12anc |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
115 |
10
|
adantr |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> -. E. x e. Word T ( ( # ` x ) = ( L - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) |
116 |
114 115
|
pm2.21dd |
|- ( ( ph /\ ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
117 |
116
|
ex |
|- ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
118 |
4
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> W e. Word T ) |
119 |
|
simprl |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. T ) |
120 |
|
simprr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. T ) |
121 |
119 120
|
s2cld |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word T ) |
122 |
|
splcl |
|- ( ( W e. Word T /\ <" r s "> e. Word T ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
123 |
118 121 122
|
syl2anc |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
124 |
123
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T ) |
125 |
64
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> G e. Mnd ) |
126 |
69
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> W e. Word ( Base ` G ) ) |
127 |
26
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
128 |
37
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
129 |
68 121
|
sselid |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> <" r s "> e. Word ( Base ` G ) ) |
130 |
129
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> <" r s "> e. Word ( Base ` G ) ) |
131 |
74
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) e. Word ( Base ` G ) ) |
132 |
|
simprr1 |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) ) |
133 |
96
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) = ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) ) |
134 |
64
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> G e. Mnd ) |
135 |
66
|
a1i |
|- ( ph -> T C_ ( Base ` G ) ) |
136 |
135
|
sselda |
|- ( ( ph /\ r e. T ) -> r e. ( Base ` G ) ) |
137 |
136
|
adantrr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> r e. ( Base ` G ) ) |
138 |
135
|
sselda |
|- ( ( ph /\ s e. T ) -> s e. ( Base ` G ) ) |
139 |
138
|
adantrl |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> s e. ( Base ` G ) ) |
140 |
61 91
|
gsumws2 |
|- ( ( G e. Mnd /\ r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) |
141 |
134 137 139 140
|
syl3anc |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r ( +g ` G ) s ) ) |
142 |
1 61 91
|
symgov |
|- ( ( r e. ( Base ` G ) /\ s e. ( Base ` G ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) |
143 |
137 139 142
|
syl2anc |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( r ( +g ` G ) s ) = ( r o. s ) ) |
144 |
141 143
|
eqtrd |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) |
145 |
144
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( r o. s ) ) |
146 |
132 133 145
|
3eqtr4rd |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum <" r s "> ) = ( G gsum ( W substr <. I , ( I + 2 ) >. ) ) ) |
147 |
61 125 126 127 128 130 131 146
|
gsumspl |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) ) |
148 |
59
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , ( W substr <. I , ( I + 2 ) >. ) >. ) ) = ( G gsum W ) ) |
149 |
5
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum W ) = ( _I |` D ) ) |
150 |
147 148 149
|
3eqtrd |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) |
151 |
26
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
152 |
37
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
153 |
118 151 152 121
|
spllen |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) ) |
154 |
|
s2len |
|- ( # ` <" r s "> ) = 2 |
155 |
154
|
oveq1i |
|- ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = ( 2 - ( ( I + 2 ) - I ) ) |
156 |
46
|
oveq2d |
|- ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = ( 2 - 2 ) ) |
157 |
44
|
subidi |
|- ( 2 - 2 ) = 0 |
158 |
156 157
|
eqtrdi |
|- ( ph -> ( 2 - ( ( I + 2 ) - I ) ) = 0 ) |
159 |
155 158
|
eqtrid |
|- ( ph -> ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) = 0 ) |
160 |
159
|
oveq2d |
|- ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = ( ( # ` W ) + 0 ) ) |
161 |
6 52
|
eqeltrd |
|- ( ph -> ( # ` W ) e. CC ) |
162 |
161
|
addid1d |
|- ( ph -> ( ( # ` W ) + 0 ) = ( # ` W ) ) |
163 |
160 162 6
|
3eqtrd |
|- ( ph -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) |
164 |
163
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( # ` W ) + ( ( # ` <" r s "> ) - ( ( I + 2 ) - I ) ) ) = L ) |
165 |
153 164
|
eqtrd |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) |
166 |
165
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) |
167 |
150 166
|
jca |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) |
168 |
27
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( I + 1 ) e. ( 0 ..^ L ) ) |
169 |
|
simprr2 |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( s \ _I ) ) |
170 |
|
1nn0 |
|- 1 e. NN0 |
171 |
|
2nn |
|- 2 e. NN |
172 |
|
1lt2 |
|- 1 < 2 |
173 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
174 |
170 171 172 173
|
mpbir3an |
|- 1 e. ( 0 ..^ 2 ) |
175 |
154
|
oveq2i |
|- ( 0 ..^ ( # ` <" r s "> ) ) = ( 0 ..^ 2 ) |
176 |
174 175
|
eleqtrri |
|- 1 e. ( 0 ..^ ( # ` <" r s "> ) ) |
177 |
176
|
a1i |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> 1 e. ( 0 ..^ ( # ` <" r s "> ) ) ) |
178 |
118 151 152 121 177
|
splfv2a |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = ( <" r s "> ` 1 ) ) |
179 |
|
s2fv1 |
|- ( s e. T -> ( <" r s "> ` 1 ) = s ) |
180 |
179
|
ad2antll |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 1 ) = s ) |
181 |
178 180
|
eqtrd |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) |
182 |
181
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) = s ) |
183 |
182
|
difeq1d |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = ( s \ _I ) ) |
184 |
183
|
dmeqd |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) = dom ( s \ _I ) ) |
185 |
169 184
|
eleqtrrd |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
186 |
|
fzosplitsni |
|- ( I e. ( ZZ>= ` 0 ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
187 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
188 |
186 187
|
eleq2s |
|- ( I e. NN0 -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
189 |
18 188
|
syl |
|- ( ph -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
190 |
189
|
adantr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) <-> ( j e. ( 0 ..^ I ) \/ j = I ) ) ) |
191 |
|
fveq2 |
|- ( k = j -> ( W ` k ) = ( W ` j ) ) |
192 |
191
|
difeq1d |
|- ( k = j -> ( ( W ` k ) \ _I ) = ( ( W ` j ) \ _I ) ) |
193 |
192
|
dmeqd |
|- ( k = j -> dom ( ( W ` k ) \ _I ) = dom ( ( W ` j ) \ _I ) ) |
194 |
193
|
eleq2d |
|- ( k = j -> ( A e. dom ( ( W ` k ) \ _I ) <-> A e. dom ( ( W ` j ) \ _I ) ) ) |
195 |
194
|
notbid |
|- ( k = j -> ( -. A e. dom ( ( W ` k ) \ _I ) <-> -. A e. dom ( ( W ` j ) \ _I ) ) ) |
196 |
195
|
rspccva |
|- ( ( A. k e. ( 0 ..^ I ) -. A e. dom ( ( W ` k ) \ _I ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
197 |
9 196
|
sylan |
|- ( ( ph /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
198 |
197
|
adantlr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( W ` j ) \ _I ) ) |
199 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> W e. Word T ) |
200 |
26
|
ad2antrr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> I e. ( 0 ... ( I + 2 ) ) ) |
201 |
37
|
ad2antrr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) |
202 |
121
|
adantr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> <" r s "> e. Word T ) |
203 |
|
simpr |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> j e. ( 0 ..^ I ) ) |
204 |
199 200 201 202 203
|
splfv1 |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( W ` j ) ) |
205 |
204
|
difeq1d |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( W ` j ) \ _I ) ) |
206 |
205
|
dmeqd |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( W ` j ) \ _I ) ) |
207 |
198 206
|
neleqtrrd |
|- ( ( ( ph /\ ( r e. T /\ s e. T ) ) /\ j e. ( 0 ..^ I ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
208 |
207
|
ex |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
209 |
208
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
210 |
|
simprr3 |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( r \ _I ) ) |
211 |
|
0nn0 |
|- 0 e. NN0 |
212 |
|
2pos |
|- 0 < 2 |
213 |
|
elfzo0 |
|- ( 0 e. ( 0 ..^ 2 ) <-> ( 0 e. NN0 /\ 2 e. NN /\ 0 < 2 ) ) |
214 |
211 171 212 213
|
mpbir3an |
|- 0 e. ( 0 ..^ 2 ) |
215 |
214 175
|
eleqtrri |
|- 0 e. ( 0 ..^ ( # ` <" r s "> ) ) |
216 |
215
|
a1i |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> 0 e. ( 0 ..^ ( # ` <" r s "> ) ) ) |
217 |
118 151 152 121 216
|
splfv2a |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( <" r s "> ` 0 ) ) |
218 |
32
|
addid1d |
|- ( ph -> ( I + 0 ) = I ) |
219 |
218
|
adantr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( I + 0 ) = I ) |
220 |
219
|
fveq2d |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 0 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) |
221 |
|
s2fv0 |
|- ( r e. T -> ( <" r s "> ` 0 ) = r ) |
222 |
221
|
ad2antrl |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( <" r s "> ` 0 ) = r ) |
223 |
217 220 222
|
3eqtr3d |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) = r ) |
224 |
223
|
difeq1d |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = ( r \ _I ) ) |
225 |
224
|
dmeqd |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) = dom ( r \ _I ) ) |
226 |
225
|
eleq2d |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) |
227 |
226
|
adantrr |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) <-> A e. dom ( r \ _I ) ) ) |
228 |
210 227
|
mtbird |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
229 |
|
fveq2 |
|- ( j = I -> ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) ) |
230 |
229
|
difeq1d |
|- ( j = I -> ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
231 |
230
|
dmeqd |
|- ( j = I -> dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) |
232 |
231
|
eleq2d |
|- ( j = I -> ( A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) |
233 |
232
|
notbid |
|- ( j = I -> ( -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` I ) \ _I ) ) ) |
234 |
228 233
|
syl5ibrcom |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j = I -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
235 |
209 234
|
jaod |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( j e. ( 0 ..^ I ) \/ j = I ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
236 |
190 235
|
sylbid |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( j e. ( 0 ..^ ( I + 1 ) ) -> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
237 |
236
|
ralrimiv |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
238 |
168 185 237
|
3jca |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
239 |
|
oveq2 |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( G gsum w ) = ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) ) |
240 |
239
|
eqeq1d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) ) ) |
241 |
|
fveqeq2 |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( # ` w ) = L <-> ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) |
242 |
240 241
|
anbi12d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) <-> ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) ) ) |
243 |
|
fveq1 |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` ( I + 1 ) ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) ) |
244 |
243
|
difeq1d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` ( I + 1 ) ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
245 |
244
|
dmeqd |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` ( I + 1 ) ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) |
246 |
245
|
eleq2d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` ( I + 1 ) ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) ) ) |
247 |
|
fveq1 |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( w ` j ) = ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) ) |
248 |
247
|
difeq1d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( w ` j ) \ _I ) = ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
249 |
248
|
dmeqd |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> dom ( ( w ` j ) \ _I ) = dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) |
250 |
249
|
eleq2d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A e. dom ( ( w ` j ) \ _I ) <-> A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
251 |
250
|
notbid |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( -. A e. dom ( ( w ` j ) \ _I ) <-> -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
252 |
251
|
ralbidv |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) <-> A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) |
253 |
246 252
|
3anbi23d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) <-> ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) |
254 |
242 253
|
anbi12d |
|- ( w = ( W splice <. I , ( I + 2 ) , <" r s "> >. ) -> ( ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) <-> ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) ) |
255 |
254
|
rspcev |
|- ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) e. Word T /\ ( ( ( G gsum ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = ( _I |` D ) /\ ( # ` ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( ( W splice <. I , ( I + 2 ) , <" r s "> >. ) ` j ) \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
256 |
124 167 238 255
|
syl12anc |
|- ( ( ph /\ ( ( r e. T /\ s e. T ) /\ ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |
257 |
256
|
expr |
|- ( ( ph /\ ( r e. T /\ s e. T ) ) -> ( ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
258 |
257
|
rexlimdvva |
|- ( ph -> ( E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) ) |
259 |
2 3 87 89 8
|
psgnunilem1 |
|- ( ph -> ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( _I |` D ) \/ E. r e. T E. s e. T ( ( ( W ` I ) o. ( W ` ( I + 1 ) ) ) = ( r o. s ) /\ A e. dom ( s \ _I ) /\ -. A e. dom ( r \ _I ) ) ) ) |
260 |
117 258 259
|
mpjaod |
|- ( ph -> E. w e. Word T ( ( ( G gsum w ) = ( _I |` D ) /\ ( # ` w ) = L ) /\ ( ( I + 1 ) e. ( 0 ..^ L ) /\ A e. dom ( ( w ` ( I + 1 ) ) \ _I ) /\ A. j e. ( 0 ..^ ( I + 1 ) ) -. A e. dom ( ( w ` j ) \ _I ) ) ) ) |